A dataset-free deep learning method for low-dose CT image reconstruction

نویسندگان

چکیده

Low-dose CT (LDCT) imaging attracted a considerable interest for the reduction of object's exposure to X-ray radiation. In recent years, supervised deep learning (DL) has been extensively studied LDCT image reconstruction, which trains network over dataset containing many pairs normal-dose and low-dose images. However, challenge on collecting such in clinical setup limits application supervised-learning-based methods reconstruction practice. Aiming at addressing challenges raised by collection training dataset, this paper proposed unsupervised method does not require any external data. The is built re-parametrization technique Bayesian inference via with random weights, combined additional total variational~(TV) regularization. experiments show that noticeably outperforms existing dataset-free test

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

200x Low-dose PET Reconstruction using Deep Learning

Positron emission tomography (PET) is widely used in various clinical applications, including cancer diagnosis, heart disease and neuro disorders. The use of radioactive tracer in PET imaging raises concerns due to the risk of radiation exposure. To minimize this potential risk in PET imaging, efforts have been made to reduce the amount of radiotracer usage. However, lowing dose results in low ...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.

PURPOSE Due to the potential risk of inducing cancer, radiation exposure by X-ray CT devices should be reduced for routine patient scanning. However, in low-dose X-ray CT, severe artifacts typically occur due to photon starvation, beam hardening, and other causes, all of which decrease the reliability of the diagnosis. Thus, a high-quality reconstruction method from low-dose X-ray CT data has b...

متن کامل

A New Method for Detecting Ships in Low Size and Low Contrast Marine Images: Using Deep Stacked Extreme Learning Machines

Detecting ships in marine images is an essential problem in maritime surveillance systems. Although several types of deep neural networks have almost ubiquitously used for this purpose, but the performance of such networks greatly drops when they are exposed to low size and low contrast images which have been captured by passive monitoring systems. On the other hand factors such as sea waves, c...

متن کامل

Database-assisted low-dose CT image restoration.

PURPOSE Acquiring data for CT at low radiation doses has become a pressing goal. Unfortunately, the reduced data quality adversely affects the quality of the reconstructions, impeding their readability. In previous work, the authors showed how a prior regular-dose scan of the same patient can efficiently be used to mitigate low-dose artifacts. However, since a prior is not always available, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inverse Problems

سال: 2022

ISSN: ['0266-5611', '1361-6420']

DOI: https://doi.org/10.1088/1361-6420/ac8ac6