A Cyclage Poset Structure for Littlewood–Richardson Tableaux

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Cyclage Poset Structure for Littlewood-Richardson Tableaux

A graded poset structure is defined for the sets of LittlewoodRichardson (LR) tableaux that count the multiplicity of an irreducible gl(n)module in the tensor product of irreducible gl(n)-modules corresponding to rectangular partitions. This poset generalizes the cyclage poset on columnstrict tableaux defined by Lascoux and Schützenberger, and its grading function generalizes the charge statist...

متن کامل

A poset structure on quasifibonacci partitions

In this paper, we study partitions of positive integers into distinct quasifibonacci numbers. A digraph and poset structure is constructed on the set of such partitions. Furthermore, we discuss the symmetric and recursive relations between these posets. Finally, we prove a strong generalization of Robbins’ result on the coefficients of a quasifibonacci power series.

متن کامل

The structure of alternative tableaux

In this paper we study alternative tableaux introduced by Viennot [17]. These tableaux are in simple bijection with permutation tableaux, dened previously by Postnikov [12]. We exhibit a simple recursive structure for alternative tableaux. From this decomposition, we can easily deduce a number of enumerative results. We also give bijections between these tableaux and certain classes of labeled ...

متن کامل

The Structure of the Consecutive Pattern Poset

The consecutive pattern poset is the infinite partially ordered set of all permutations where σ ≤ τ if τ has a subsequence of adjacent entries in the same relative order as the entries of σ. We study the structure of the intervals in this poset from topological, poset-theoretic, and enumerative perspectives. In particular, we prove that all intervals are rank-unimodal and strongly Sperner, and ...

متن کامل

Graded Characters of Modules Supported in the Closure of a Nilpotent Conjugacy Class

This is a combinatorial study of the Poincaré polynomials of isotypic components of a natural family of graded GL(n)-modules supported in the closure of a nilpotent conjugacy class. These polynomials generalize the Kostka-Foulkes polynomials and are q-analogues of Littlewood-Richardson coefficients. The coefficients of two-column Macdonald-Kostka polynomials also occur as a special case. It is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2001

ISSN: 0195-6698

DOI: 10.1006/eujc.2000.0464