A criterion for variable selection in multiple discriminant analysis
نویسندگان
چکیده
منابع مشابه
Variable selection in model-based discriminant analysis
A general methodology for selecting predictors for Gaussian generative classification models is presented. The problem is regarded as a model selection problem. Three different roles for each possible predictor are considered: a variable can be a relevant classification predictor or not, and the irrelevant classification variables can be linearly dependent on a part of the relevant predictors o...
متن کاملA Variable Selection Criterion for Linear Discriminant Rule and its Optimality in High Dimensional Setting
In this paper, we suggest the new variable selection procedure, called MEC, for linear discriminant rule in the high-dimensional setup. MEC is derived as a second-order unbiased estimator of the misclassification error probability of the linear discriminant rule. It is shown that MEC not only decomposes into ‘fitting’ and ‘penalty’ terms like AIC and Mallows Cp, but also possesses an asymptotic...
متن کاملAnalysis of new variable selection methods for discriminant analysis
Several methods to select variables that are subsequently used in discriminant analysis are proposed and analysed. The aim is to find from among a set of m variables a smaller subset which enables an efficient classification of cases. Reducing dimensionality has some advantages such as reducing the costs of data acquisition, better understanding of the final classification model, and an increas...
متن کاملDiscriminant Analysis for ARMA Models Based on Divergency Criterion: A Frequency Domain Approach
The extension of classical analysis to time series data is the basic problem faced in many fields, such as engineering, economic and medicine. The main objective of discriminant time series analysis is to examine how far it is possible to distinguish between various groups. There are two situations to be considered in the linear time series models. Firstly when the main discriminatory informati...
متن کاملVariable selection in discriminant partial least-squares analysis.
Variable selection enhances the understanding and interpretability of multivariate classification models. A new chemometric method based on the selection of the most important variables in discriminant partial least-squares (VS-DPLS) analysis is described. The suggested method is a simple extension of DPLS where a small number of elements in the weight vector w is retained for each factor. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hiroshima Mathematical Journal
سال: 1983
ISSN: 0018-2079
DOI: 10.32917/hmj/1206133544