A covariance matrix adaptation evolution strategy in reproducing kernel Hilbert space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Covariance Matrix Adaptation Evolution Strategy for Direct Policy Search in Reproducing Kernel Hilbert Space

The covariance matrix adaptation evolution strategy (CMA-ES) is an efficient derivativefree optimization algorithm. It optimizes a black-box objective function over a well defined parameter space. In some problems, such parameter spaces are defined using function approximation in which feature functions are manually defined. Therefore, the performance of those techniques strongly depends on the...

متن کامل

Step Size Adaptation in Reproducing Kernel Hilbert Space

This paper presents an online support vector machine (SVM) that uses the stochastic meta-descent (SMD) algorithm to adapt its step size automatically. We formulate the online learning problem as a stochastic gradient descent in reproducing kernel Hilbert space (RKHS) and translate SMD to the nonparametric setting, where its gradient trace parameter is no longer a coefficient vector but an eleme...

متن کامل

Task Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing

The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...

متن کامل

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

Subspace Regression in Reproducing Kernel Hilbert Space

We focus on three methods for finding a suitable subspace for regression in a reproducing kernel Hilbert space: kernel principal component analysis, kernel partial least squares and kernel canonical correlation analysis and we demonstrate how this fits within a more general context of subspace regression. For the kernel partial least squares case a least squares support vector machine style der...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Genetic Programming and Evolvable Machines

سال: 2019

ISSN: 1389-2576,1573-7632

DOI: 10.1007/s10710-019-09357-1