A convergent finite difference scheme for the variational heat equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Finite Difference Scheme for the Heat Conduction Equation

We use equations similar to the heat conduction equation to calulate heat transfer, radiation transfer and hydrostatical equilibrium in our stellar evolution programs. We tried various numerical schemes and found that the most convenient scheme for complicated calculations (nonlinear, multidimensional calculations) is a symmetrical semi-implicit (SSI) scheme. The (SSI) scheme is easy to code, v...

متن کامل

A Convergent Finite Difference Method for a Nonlinear Variational Wave Equation

We establish rigorously convergence of a semi-discrete upwind scheme for the nonlinear variational wave equation utt − c(u)(c(u)ux)x = 0 with u|t=0 = u0 and ut|t=0 = v0. Introducing Riemann invariants R = ut + cux and S = ut − cux, the variational wave equation is equivalent to Rt − cRx = c̃(R2 − S2) and St + cSx = −c̃(R2 − S2) with c̃ = c′/(4c). An upwind scheme is defined for this system. We ass...

متن کامل

A Supra-Convergent Finite Difference Scheme for the Variable Coefficient Poisson Equation on Fully Adaptive Grids

We introduce a method for solving the variable coefficient Poisson equation on fully adaptive Cartesian grids that yields second order accuracy for the solutions and their gradients. We employ quadtree (in 2D) and octree (in 3D) data structures as an efficient means to represent the Cartesian grid, allowing for constraint-free grid generation. The schemes take advantage of sampling the solution...

متن کامل

A Convergent Finite Difference Scheme for the Camassa-Holm Equation with General H1 Initial Data

We suggest a finite dfference scheme for the Camassa-Holm equation that can handle general H1 initial data. The form of the difference scheme is judiciously chosen to ensure that it satisfies a total energy inequality. We prove that the difference scheme converges strongly in H1 towards an exact dissipative weak solution of Camassa-Holm equation.

متن کامل

A supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-graded grids

We introduce a method for solving the variable coefficient Poisson equation on non-graded Cartesian grids that yields second order accuracy for the solutions and their gradients. We employ quadtree (in 2D) and octree (in 3D) data structures as an efficient means to represent the Cartesian grid, allowing for constraint-free grid generation. The schemes take advantage of sampling the solution at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Zeitschrift für angewandte Mathematik und Physik

سال: 2017

ISSN: 0044-2275,1420-9039

DOI: 10.1007/s00033-017-0871-z