A class of summing operators acting in spaces of operators

نویسندگان

چکیده

Let \(X\), \(Y\) and \(Z\) be Banach spaces let \(U\) a subspace of \(\mathcal{L}(X^*,Y)\), the space all operators from \(X^*\) to \(Y\). An operator \(S\colon U \to Z\) is said \((\ell^s_p,\ell_p)\)-summing (where \(1\leq p <\infty\)) if there constant \(K\geq 0\) such that \(\left( \sum_{i=1}^n \|S(T_i)\|_Z^p \right)^{1/p}\le K\sup_{x^* \in B_{X^*}} \left(\sum_{i=1}^n \|T_i(x^*)\|_Y^p\right)^{1/p}\) for every \(n\in\mathbf{N}\) \(T_1,\dots,T_n U\). In this paper we study class operators, introduced by Blasco Signes as natural generalization \((p,Y)\)-summing Kislyakov. On one hand, discuss Pietsch-type domination results for operators. direction, provide negative answer question raised Signes, also give new insight on result Botelho Santos. other extend setting classical theorem Kwapien characterizing those which factor \(S_1\circ S_2\), where \(S_2\) absolutely \(p\)-summing \(S_1^*\) \(q\)-summing (\(1<p,q<\infty\) \(1/p+1/q \leq 1\)).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

A Class of compact operators on homogeneous spaces

Let  $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and  $H$ be a compact subgroup of $G$. For  an admissible wavelet $zeta$ for $varpi$  and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded  compact operators  which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.

متن کامل

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

متن کامل

Uniformly summing sets of operators on spaces of continuous functions

Let X and Y be Banach spaces. A set ᏹ of 1-summing operators from X into Y is said to be uniformly summing if the following holds: given a weakly 1-summing sequence (x n) in X, the series n T x n is uniformly convergent in T ∈ ᏹ. We study some general properties and obtain a characterization of these sets when ᏹ is a set of operators defined on spaces of continuous functions.

متن کامل

a class of compact operators on homogeneous spaces

let  $varpi$ be a representation of the homogeneous space $g/h$, where $g$ be a locally compact group and  $h$ be a compact subgroup of $g$. for  an admissible wavelet $zeta$ for $varpi$  and $psi in l^p(g/h), 1leq p

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Fennici Mathematici

سال: 2021

ISSN: ['2737-0690', '2737-114X']

DOI: https://doi.org/10.5186/aasfm.2021.4647