A class of approximate solutions to linear operator equations
نویسندگان
چکیده
منابع مشابه
Hermitian solutions to the system of operator equations T_iX=U_i.
In this article we consider the system of operator equations T_iX=U_i for i=1,2,...,n and give necessary and suffcient conditions for the existence of common Hermitian solutions to this system of operator equations for arbitrary operators without the closedness condition. Also we study the Moore-penrose inverse of a ncross 1 block operator matrix and. then gi...
متن کاملEvolution System Approximations of Solutions to Closed Linear Operator Equations
ABSTRACT. With S a linearly ordered set with the least upper bound property, with g a nonincreasing real-valued function on S, and with A a densely denned dissipative linear operator, an evolution system M is developed to solve the modified Stieljes integral equation M(s, i)x = x + A((L)[sdgM(-, t)x). An affine version of this equation is also considered. Under the hypothesis that the evolufion...
متن کاملThe solutions to some operator equations in Hilbert $C^*$-module
In this paper, we state some results on product of operators with closed ranges and we solve the operator equation $TXS^*-SX^*T^*= A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $TS = 1$. Furthermore, by using some block operator matrix techniques, we nd explicit solution of the operator equation $TXS^*-SX^*T^*= A$.
متن کاملApproximate Solutions of Nonlinear Random Operator Equations: Convergence in Distribution
For nonlinear random operator equations where the distributions of the stochastic inputs are approximated by sequences of random variables converging in distribution and where the underlying deterministic equations are simultaneously approximated, we prove a result about tightness and convergence in distribution of the approximate solutions. We apply our result to a random differential equation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1973
ISSN: 0021-9045
DOI: 10.1016/0021-9045(73)90112-3