A CHARACTERISTIC OF SPECIES OF 7 × 7 LATIN SQUARES

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 7 M ar 2 00 3 Latin Squares , Partial Latin Squares and its Generalized Quotients

A (partial) Latin square is a table of multiplication of a (partial) quasigroup. Multiplication of a (partial) quasigroup may be considered as a set of triples. We give a necessary and sufficient condition when a set of triples is a quotient of a (partial) Latin square.

متن کامل

The number of mates of latin squares of sizes 7 and 8∗

We study the number of mates that a latin square may possess as a function of the size of the square. We performed an exhaustive computer search of all squares of sizes 7 and 8, giving the exact value for the maximum number of mates for squares of these sizes. The squares of size 8 with the maximum number of mates are exactly the Cayley tables of Z2 = Z2×Z2×Z2, and each such square has 70, 272 ...

متن کامل

Nonexistence of (3, 2, 1)-conjugate (v+7)-orthogonal Latin squares

Two Latin squares of order v are r-orthogonal if their superposition produces exactly r distinct ordered pairs. If the second square is the (3, 2, 1)-conjugate of the first one, we say that the first square is (3, 2, 1)conjugate r-orthogonal, denoted by (3, 2, 1)-r-COLS(v). The nonexistence of (3, 2, 1)-r-COLS(v) for r ∈ {v + 2, v + 3, v + 5} has been proved by Zhang and Xu [Int. J. Combin. Gra...

متن کامل

Frequency Squares of Orders 7 and 8

We enumerate frequency squares of orders 7 and 8 and the corresponding isotopism classes. An error in a previous paper by L.J. Brant and G.L. Mullen is discovered and partially corrected.

متن کامل

Latin Squares: Transversals and counting of Latin squares

Author: Jenny Zhang First, let’s preview what mutually orthogonal Latin squares are. Two Latin squares L1 = [aij ] and L2 = [bij ] on symbols {1, 2, ...n}, are said to be orthogonal if every ordered pair of symbols occurs exactly once among the n2 pairs (aij , bij), 1 ≤ i ≤ n, 1 ≤ j ≤ n. Now, let me introduce a related concept which is called transversal. A transversal of a Latin square is a se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Eugenics

سال: 1947

ISSN: 2050-1420

DOI: 10.1111/j.1469-1809.1947.tb02385.x