A Broyden Rank p+1 Update Continuation Method with Subspace Iteration

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Broyden Rank p+1 Update Continuation Method with Subspace Iteration

In this paper we present an efficient branch-following procedure that can be used not only to compute branches of periodic solutions of periodically forced dynamical systems but also to determine the stability of the periodic solutions. The procedure combines Broyden’s method with a subspace iteration method to determine the dominant eigenvalues. The method has connections with the hybrid Newto...

متن کامل

An Accelerated Subspace Iteration Method

The analysis of a number of physical phenomena requires the solution of an eigenproblem. It is therefore natural that with the increased use of computational methods operating on discrete representations of physical problems the development of efficient algorithms for the calculation of eigenvalues and eigenvectors has attracted much attention [l]-[8]. In particular, the use of finite element a...

متن کامل

The subspace iteration method – Revisited

The objective in this paper is to present some recent developments regarding the subspace iteration method for the solution of frequencies and mode shapes. The developments pertain to speeding up the basic subspace iteration method by choosing an effective number of iteration vectors and by the use of parallel processing. The subspace iteration method lends itself particularly well to shared an...

متن کامل

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

A new subspace iteration method for the algebraic Riccati equation

We consider the numerical solution of the continuous algebraic Riccati equation AX +XA−XFX +G = 0, with F = F , G = G of low rank and A large and sparse. We develop an algorithm for the low rank approximation of X by means of an invariant subspace iteration on a function of the associated Hamiltonian matrix. We show that the sought after approximation can be obtained by a low rank update, in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2004

ISSN: 1064-8275,1095-7197

DOI: 10.1137/s1064827501399985