A Boundary Condition--Capturing Multigrid Approach to Irregular Boundary Problems
نویسندگان
چکیده
منابع مشابه
A Boundary Condition-Capturing Multigrid Approach to Irregular Boundary Problems
We propose a geometric multigrid method for solving linear systems arising from irregular boundary problems involving multiple interfaces in two and three dimensions. In this method, we adopt a matrix-free approach; i.e., we do not form the fine grid matrix explicitly and we never form nor store the coarse grid matrices, as many other robust multigrid methods do. The main idea is to construct a...
متن کاملOn Boundary Condition Capturing for Multiphase Interfaces
This paper begins with an overview of the boundary condition capturing approach to solving problems with interfaces. Although, the authors’ original motivation was to extend the ghost fluid method from compressible to incompressible flow, the elliptic nature of incompressible flow quickly quenched the idea that ghost cells could be defined and used in the usual manner. Instead the boundary cond...
متن کاملA Boundary Condition Capturing Method for Multiphase Incompressible Flow
In [6], the Ghost Fluid Method (GFM) was developed to capture the boundary conditions at a contact discontinuity in the inviscid compressible Euler equations. In [11], related techniques were used to develop a boundary condition capturing approach for the variable coefficient Poisson equation on domains with an embedded interface. In this paper, these new numerical techniques are extended to tr...
متن کاملA Boundary Condition Capturing Method for Incompressible Flame Discontinuities
In this paper, we propose a new numerical method for treating two phase incompressible flow where one phase is being converted into the other, e.g. the vaporization of liquid water. We consider this numerical method in the context of treating discontinuously thin flame fronts for incompressible flow. This method was designed as an extension of the Ghost Fluid Method [4] and relies heavily on th...
متن کاملA numerical approach to solve eighth order boundary value problems by Haar wavelet collocation method
In this paper a robust and accurate algorithm based on Haar wavelet collocation method (HWCM) is proposed for solving eighth order boundary value problems. We used the Haar direct method for calculating multiple integrals of Haar functions. To illustrate the efficiency and accuracy of the concerned method, few examples are considered which arise in the mathematical modeling of fluid dynamics an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2004
ISSN: 1064-8275,1095-7197
DOI: 10.1137/s1064827503428540