A Bombieri–Vinogradov Theorem for Higher-Rank Groups

نویسندگان

چکیده

Abstract We establish a result of Bombieri–Vinogradov type for the Dirichlet coefficients at prime ideals standard $L$-function associated to self-dual cuspidal automorphic representation $\pi $ $\operatorname {GL}_n$ over number field $F$ when $\pi$ is not quadratic twist itself. Our does rely on any unproven progress towards generalized Ramanujan conjecture or nonexistence Landau–Siegel zeros. In particular, fixed and equal itself, we prove first unconditional Siegel-type lower bound twisted $L$-values $|L(1,\pi \otimes \chi )|$ in $\chi $-aspect, where primitive Hecke character $F$. improves levels distribution other works that relied these hypotheses. As applications, $n=2,3,4$, $\textrm analogue Titchmarsh divisor problem nontrivial certain {GL}_n\times \textrm {GL}_2$ shifted convolution sum.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A prime geodesic theorem for higher rank spaces

A prime geodesic theorem for regular geodesics in a higher rank locally symmetric space is proved. An application to class numbers is given. The proof relies on a Lefschetz formula for higher rank torus actions.

متن کامل

A Generic Identification Theorem for Groups of Finite Morley Rank

This paper contains a final identification theorem for the ‘generic’ K*groups of finite Morley rank.

متن کامل

A signalizer functor theorem for groups of finite Morley rank

There is a longstanding conjecture, due to Gregory Cherlin and Boris Zilber, that all simple groups of finite Morley rank are simple algebraic groups. Towards this end, the development of the theory of groups of finite Morley rank has achieved a good theory of Sylow 2-subgroups. It is now common practice to divide the Cherlin-Zilber conjecture into different cases depending on the nature of the...

متن کامل

A new trichotomy theorem for groups of finite Morley rank

The Algebraicity Conjecture for simple groups of finite Morley rank, also known as the Cherlin-Zilber conjecture, states that simple groups of finite Morley rank are simple algebraic groups over algebraically closed fields. In the last 15 years, the main line of attack on this problem has been the so-called Borovik program of transferring methods from finite group theory. This program has led t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2021

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnab261