A biharmonic equation with singular nonlinearity
نویسندگان
چکیده
منابع مشابه
Rupture Solutions of an Elliptic Equation with a Singular Nonlinearity
We construct infinitely many non-radial rupture solutions of the equation ∆u = 1 up in RN\{0}, u(0) = 0, N ≥ 3 with p > pc(N − 1) := N − 1− 2 √ N − 2 2 √ N − 2− (N − 5) .
متن کاملSingular Radial Entire Solutions and Weak Solutions with Prescribed Singular Set for a Biharmonic Equation
Positive singular radial entire solutions of a biharmonic equation with subcritical exponent are obtained via the entire radial solutions of the equation with supercritical exponent and the Kelvin transformation. The expansions of such singular radial solutions at the singular point 0 are presented. Using these singular radial entire solutions, we construct solutions with a prescribed singular ...
متن کاملStochastic Cahn-Hilliard equation with singular nonlinearity and reflection
2 Solutions of equation with a reflection measure 10 2.1 Pathwise uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Convergence of invariants measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Existence of stationary solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Convergence of the semigroup . . . . . . . . . . ....
متن کاملA Diffusion Equation with Exponential Nonlinearity Recant Developments
The purpose of this paper is to analyze in detail a special nonlinear partial differential equation (nPDE) of the second order which is important in physical, chemical and technical applications. The present nPDE describes nonlinear diffusion and is of interest in several parts of physics, chemistry and engineering problems alike. Since nature is not linear intrinsically the nonlinear case is t...
متن کاملRing-type singular solutions of the biharmonic nonlinear Schrödinger equation
We present new singular solutions of the biharmonic nonlinear Schrödinger equation (NLS) iψt(t,x)− ψ + |ψ |2σψ = 0, x ∈ R , 4/d σ 4. These solutions collapse with the quasi-self-similar ring profile ψQB , where |ψQB(t, r)| ∼ 1 L2/σ (t) QB ( r − rmax(t) L(t) ) , r = |x|, L(t) is the ring width that vanishes at singularity, rmax(t) ∼ r0L(t) is the ring radius, and α = (4 − σ)/(σ (d − 1)). The blo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 2011
ISSN: 0013-0915,1464-3839
DOI: 10.1017/s0013091510000234