A Bayesian Robust IRT Outlier-Detection Model
نویسندگان
چکیده
منابع مشابه
BOPA: A Bayesian hierarchical model for outlier expression detection
DNA microarray technologies have the capability of simultaneously measuring the abundance of thousands of gene expressions in cells. A common task with microarrays is to determine which genes are differentially expressed under two different biological conditions of interest (e.g. cancerous against non-cancerous cells). It is often the case that there are thousands of genes for a single individu...
متن کاملRobust statistics for outlier detection
When analyzing data, outlying observations cause problems because they may strongly influence the result. Robust statistics aims at detecting the outliers by searching for the model fitted by the majority of the data. We present an overview of several robust methods and outlier detection tools. We discuss robust procedures for univariate, low-dimensional, and high-dimensional data such as estim...
متن کاملBayesian outlier detection in Capital Asset Pricing Model
We propose a novel Bayesian optimisation procedure for outlier detection in the Capital Asset Pricing Model. We use a parametric product partition model to robustly estimate the systematic risk of an asset. We assume that the returns follow independent normal distributions and we impose a partition structure on the parameters of interest. The partition structure imposed on the parameters induce...
متن کاملOutlier detection for acoustic model training using robust statistics
In this paper, we propose an acoustic model training technique which is robust against outliers such as clipping, unexpected noise, poorly pronounced word segments, or mistranscriptions, which deteriorate the quality of the acoustic models and in turn decrease speech recognition performance. The outlier-robust acoustic model training technique is based on a maximum likelihood (ML) criterion and...
متن کاملOutlier robust system identification: a Bayesian kernel-based approach
In this paper, we propose an outlier-robust regularized kernel-based method for linear system identification. The unknown impulse response is modeled as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline kernel, which encodes information on regularity and exponential stability. To build robustness to outliers, we model the measurement noise as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Psychological Measurement
سال: 2016
ISSN: 0146-6216,1552-3497
DOI: 10.1177/0146621616679394