A Bayesian Augmented-Learning framework for spectral uncertainty quantification of incomplete records of stochastic processes
نویسندگان
چکیده
A novel Bayesian Augmented-Learning framework, quantifying the uncertainty of spectral representations stochastic processes in presence missing data, is developed. The approach combines additional information (prior domain knowledge) physical with real, yet incomplete, observations. deep learning models are trained to learn underlying process, probabilistically capturing temporal dynamics, from physics-based pre-simulated data. An ensemble time reconstructions provided through recurrent computations using learned models. Models characterized by posterior distribution model parameters, whereby uncertainties over models, and all quantified. In particular, three neural network architectures, (namely long short-term memory, or LSTM, LSTM-Autoencoder, LSTM-Autoencoder teacher forcing mechanism), which implemented a framework variational inference, investigated compared under many data scenarios. example dynamics pertaining characterization earthquake-induced excitations even when source load records incomplete used illustrate framework. Results highlight superiority proposed approach, adopts information, versatility outputting forms results probabilistic manner.
منابع مشابه
A Bayesian Framework for Quantifying Uncertainty in Stochastic Simulation
When we use simulation to estimate the performance of a stochastic system, the simulation often contains input models that were estimated from real-world data; therefore, there is both simulation and input uncertainty in the performance estimates. In this paper, we provide a method to measure the overall uncertainty while simultaneously reducing the influence of simulation estimation error due ...
متن کاملBayesian Framework for Multidisciplinary Uncertainty Quantification and Optimization
This paper presents a comprehensive methodology that combines uncertainty quantification, propagation and robustness-based design optimization using a Bayesian framework. Two types of epistemic uncertainty regarding model inputs/parameters are emphasized: (1) uncertainty modeled as p-box, and (2) uncertainty modeled as interval data. A Bayesian approach is used to calibrate the uncertainty mode...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملnetwork of phonological rules in lori dialect of andimeshk: a study within the framework of post-generative approach.
پژوهش حاضر ارائه ی توصیفی است از نظام آوایی گویش لری شهر اندیمشک، واقع در شمال غربی استان خوزستان. چهارچوب نظری این پژوهش، انگاره ی پسازایشی جزءمستقل می باشد. این پایان نامه شامل موارد زیر است: -توصیف آواهای این گویش به صورت آواشناسی سنتی و در قالب مختصه های زایشی ممیز، همراه با آوانوشته ی تفصیلی؛ -توصیف نظام آوایی گویش لری و قواعد واجی آن در چهارچوب انگاره ی پسازایشی جزءمستقل و معرفی برهم کن...
A Useful Family of Stochastic Processes for Modeling Shape Diffusions
One of the new area of research emerging in the field of statistics is the shape analysis. Shape is defined as all the geometrical information of an object whose location, scale and orientation is not of interest. Diffusion in shape analysis can be studied via either perturbation of the key coordinates identifying the initial object or random evolution of the shape itself. Reviewing the f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mechanical Systems and Signal Processing
سال: 2023
ISSN: ['1096-1216', '0888-3270']
DOI: https://doi.org/10.1016/j.ymssp.2023.110573