A Bayesian Approach to Predictor Selection for Seasonal Streamflow Forecasting
نویسندگان
چکیده
منابع مشابه
Peak demand forecasting for a seasonal product using Bayesian approach
An actual demand-forecasting problem of the US apparel dealers is studied. Demand is highly fluctuating during the peak sale season and low prior to the peak season. The model is described by the continuous time stochastic process applying the Bayesian process. The standard gamma distribution is selected for the demand process and an inverse gamma distribution is chosen as the conjugate prior f...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولa benchmarking approach to optimal asset allocation for insurers and pension funds
uncertainty in the financial market will be driven by underlying brownian motions, while the assets are assumed to be general stochastic processes adapted to the filtration of the brownian motions. the goal of this study is to calculate the accumulated wealth in order to optimize the expected terminal value using a suitable utility function. this thesis introduced the lim-wong’s benchmark fun...
15 صفحه اولThe Bayesian Approach to Forecasting
INTRODUCTION The Bayesian approach uses a combination of a priori and post priori knowledge to model time series data. That is, we know if we toss a coin we expect a probability of 0.5 for heads or for tails—this is a priori knowledge. Therefore, if we take a coin and toss it 10 times, we will expect five heads and five tails. But if the actual result is ten heads, we may lose confidence in our...
متن کاملComputationally intensive techniques for a fully Bayesian, decision theoretic approach to financial forecasting and portfolio selection
This paper considers the problem of modelling and forecasting for multivariate financial time series. The use of Dynamic Linear State Space models and Stochastic Volatility models with Kalman filtering techniques to address this problem is considered in the context of providing a modular software implementation. The combination of these two approaches is presented with an illustrative example. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Hydrometeorology
سال: 2012
ISSN: 1525-755X,1525-7541
DOI: 10.1175/jhm-d-10-05009.1