2-Connected Spanning Subgraphs of Planar 3-Connected Graphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum Weight 2-Edge-Connected Spanning Subgraphs in Planar Graphs

We present a linear time algorithm exactly solving the 2-edge connected spanning subgraph (2-ECSS) problem in a graph of bounded treewidth. Using this with Klein’s diameter reduction technique [15], we find a linear time PTAS for the problem in unweighted planar graphs, and the first PTAS for the problem in weighted planar graphs.

متن کامل

Spanning even subgraphs of 3-edge-connected graphs

By Petersen’s theorem, a bridgeless cubic graph has a 2-factor. H. Fleischner extended this result to bridgeless graphs of minimum degree at least three by showing that every such graph has a spanning even subgraph. Our main result is that, under the stronger hypothesis of 3-edge-connectivity, we can find a spanning even subgraph in which every component has at least five vertices. We show that...

متن کامل

Generating 3-vertex connected spanning subgraphs

In this paper we present an algorithm to generate all minimal 3-vertex connected spanning subgraphs of an undirected graph with n vertices and m edges in incremental polynomial time, i.e., for every K we can generate K (or all) minimal 3-vertex connected spanning subgraphs of a given graph in O(K2log(K)m2 +K2m3) time, where n and m are the number of vertices and edges of the input graph, respec...

متن کامل

Approximate Minimum 2-Connected Subgraphs in Weighted Planar Graphs

We consider the problems of finding the minimum-weight 2-connected spanning subgraph in edge-weighted planar graphs and its variations. We first give a PTAS for the problem of finding minimum-weight 2-edge-connected spanning subgraphs where duplicate edges are allowed. Then we present a new greedy spanner construction for edge-weighted planar graphs. From this we derive quasi-polynomial time ap...

متن کامل

2-walks in 3-connected Planar Graphs

In this we prove that every 3-connected planar graph has closed walk each vertex, none more than twice, such that any vertex visited twice is in a vertex cut of size 3. This both Tutte's Theorem that 4-connected planar graphs are Hamiltonian and the result of Gao and Richter that 3-connected planar graphs have a closed walk visiting each vertex at least once but at most twice.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 1994

ISSN: 0095-8956

DOI: 10.1006/jctb.1994.1045