(14) ON THE BEAM THEORY OF CIRCULAR CYLINDRICAL SHELLS
نویسندگان
چکیده
منابع مشابه
A New Three-Dimensional Refined Higher-Order Theory for Free Vibration Analysis of Composite Circular Cylindrical Shells
A new closed form formulation of three-dimensional (3-D) refined higher-order shell theory (RHOST) to analyze the free vibration of composite circular cylindrical shells has been presented in this article. The shell is considered to be laminated with orthotropic layers and simply supported boundary conditions. The proposed theory is used to investigate the effects of the in-plane and rotary ine...
متن کاملComparison between the frequencies of FML and composite cylindrical shells using beam modal function model
A comparison between the vibration of fiber-metal laminate (FML) and composite cylindrical shells has been studied in this manuscript. Love’s first approximation shell theory has been applied to obtain Strain-displacement relations. In addition, beam modal function model has been used to analyze the cylindrical shell with different boundary conditions. In this manuscript, the frequencies of FML...
متن کاملOn the number of cylindrical shells
Given a set P of n points in three dimensions, a cylindrical shell (or zone cylinder) is formed by two circular cylinders with the same axis such that all points of P are between the two cylinders. We prove that the number of cylindrical shells enclosing P passing through combinatorially different subsets of P has size Ω(n) and O(n) (the previously known bound was O(n)). As a consequence, the m...
متن کاملNotes on static cylindrical shells
Static cylindrical shells made of various types of matter are studied as sources of the vacuum Levi-Civita metrics. Their internal physical properties are related to the two essential parameters of the metrics outside. The total mass per unit length of the cylinders is always less than 1 4. The results are illustrated by a number of figures.
متن کاملOptimal Design of Cylindrical Shells
The present paper studies an optimization problem of dynamically loaded cylindrical tubes. This is a problem of linear elasticity theory. As we search for the optimal thickness of the tube which minimizes the displacement under forces, this is a problem of shape optimization. The mathematical model is given by a differential equation (ODE and PDE, respectively); the mechanical problem is descri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Architectural Institute of Japan
سال: 1958
ISSN: 0387-1185,2433-0027
DOI: 10.3130/aijsaxx.59.0_81