ε-Optimality and duality for multiobjective fractional programming
نویسندگان
چکیده
منابع مشابه
Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملOptimality and duality for nonsmooth multiobjective fractional programming with mixed constraints
We consider nonsmooth multiobjective fractional programming problems with inequality and equality constraints. We establish the necessary and sufficient optimality conditions under various generalized invexity assumptions. In addition, we formulate a mixed dual problem corresponding to primal problem, and discuss weak, strong and strict converse duality theorems.
متن کاملOptimality and duality for the multiobjective fractional programming with the generalized (F,ρ) convexity
A class of multiobjective fractional programmings (MFP) are first formulated, where the involved functions are local Lipschitz and Clarke subdifferentiable. In order to deduce our main results, we give the definitions of the generalized (F,ρ) convex class about the Clarke subgradient. Under the above generalized convexity assumption, the alternative theorem is obtained, and some sufficient and ...
متن کاملNecessary Optimality and Duality for Multiobjective Semi-infinite Programming
The aim of this paper is to deal with a class of multiobjective semi-infinite programming problem. For such problem, several necessary optimality conditions are established and proved using the powerful tool of K − subdifferential and the generalized convexity namely generalized uniform ( , , , ) K F d α ρ − − convexity. We also formulate the Wolf type dual models for the semi-infinite programm...
متن کاملOptimality and Duality for Minimax Fractional Semi-Infinite Programming
The purpose of this paper is to consider a class of nonsmooth minimax fractional semi-infinite programming problem. Based on the concept of H − tangent derivative, a new generalization of convexity, namely generalized uniform ( , ) H B ρ − invexity, is defined for this problem. For such semi-infinite programming problem, several sufficient optimality conditions are established and proved by uti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1999
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(99)00105-4