نام پژوهشگر: مهین اسکندری
مهین اسکندری مسعود معیری
هر ساله مقدار زیادی خاک از سطح حوضه های کشور توسط عوامل مختلف خصوصاَ آب و باد فرسایش و به محل دیگر انتقال یافته و ضمن محدود سازی منابع آب و خاک, مشکلات اقتصادی زیادی را پدید می آورد. از لحاظ ژئومورفولوژی مهمترین ویژگی رودخانه ها حمل مواد رسوبی است. حمل مواد رسوبی حاصل فرایندی به نام فرسایش آبی است که موجب تغییر در فرم های سطح زمین می گردد. روشهای تجزیه و تحلیل منطقه ای به واسطه امکان تهیه مدل های مناسب برآورد رسوب معلق و شناسایی عوامل دخیل در رسوب زایی می توانند در شناسایی تغییرات کوتاه مدت رودخانه ها موثر باشند. هدف از این پژوهش تبیین پراکنش میزان جریان و تولید رسوب در بازه های مختلف زمانی و مدلسازی رواناب- رسوب درحوضه رودخانه بادآور ونیز مطالعه خصوصیات ژئومورفولوژیکی حوضه به منظور افزایش کارایی مدل های رواناب- رسوب می باشد. بدین منظور داده های 32 ساله جریان و رسوب ایستگاه هیدرومتری نورآباد جمع آوری گشته و بر اساس بازه های زمانی روزانه, ماهانه, فصلی و سالانه تفکیک شد. مدل سازی رابطه سنجی بین پارامترهای رواناب و رسوب بر اساس آنالیز رگرسیون نمایی تحلیل شده است. در ارتباطات حاصل از آنالیز رگرسیون بین دبی و رسوب در سطح احتمال خطای کمتر از یک درصد مشخص شد که ارتباط بین دبی و رسوب در مدل های ماههای سیلابی, فصول بهار و زمستان و ماههای فروردین, اردیبهشت, بهمن و اسفند و مقایسه رسوب ماهانه با متوسط رسوب ماهانه بلند مدت (در هر دو حالت), دارای ضریب تبیین بالا می باشند. در کل و در بین تمامی مدلهای مقایسه دبی و رسوب مدلهای ماه اسفند و حالتی که متوسط رسوب ماهانه بیش از متوسط رسوب ماهانه بلند مدت است هر دومدل با ضریب تبیین 717/0 بیشترین ارتباط را بین دبی و رسوب نشان می دهند. در مدل هیدروژئومورفولوژی که ارتباط بین دبی و پارامترهای ژئومورفولوژیکی به عنوان متغیرهای مستقل و رسوب به عنوان متغیر وابسته را نمایان می سازد, ملاحضه می گردد که در مدل ماههای فروردین, خرداد, مرداد و آذر, حالتی که متوسط رسوب ماهانه کمتر از متوسط رسوب ماهانه در کل دوره آماری است, حالتی که متوسط رسوب ماهانه کمتر از یک دوم متوسط رسوب سالانه است, حالتی که متوسط رسوب ماهانه بیشتر از یک دوم و کمتر از دو برابر متوسط رسوب سالانه است, ضریب تبیین مدل ها افزایش یافته است. واژگان کلیدی: رسوب معلق, مدل رگرسیونی, رواناب, رودخانه بادآور, هیدرولوژی , ژئومورفولوژی
مهین اسکندری فرض اله میرزاپور
در این پایان نامه نشان می دهیم که اگر s ، t و x عملگرهایی روی فضای هیلبرت مختلط جدایی پذیر h باشند بطوریکه s وt فشرده و مثبت باشند آنگاه مقادیر تکین جابجاگرtx-xs به ?x?(t?s)محدود می شود، در اینجا منظور از ?.?نرم معمولی عملگرهاست. بنابراین برای نرم عملگرهای بطور یکانی پایا داریم ||| tx – xs ||| ? ? x ? ||| t ?s |||. و نشان می دهیم که اگرs و t مثبت و x فشرده باشد، آنگاه برای هر نرم بطور یکانی پایا خواهیم داشت ||| tx – xs ||| ? max (?t?,?s?) |||x|||. علاوه بر این اگر x مثبت باشد برای نرم بطور یکانی پایا داریم ||| tx – xt ||| ? 1/2 ?t? ||| x?x |||. این نامساوی نرم برای نرم معمولی عملگرها بدون شرط فشردگی برقرار است. و همچنین ثابت می کنیم که اگرt=u|t| تجزیه ی قطبی عملگرt باشد، آنگاه برای هر نرم بطور یکانی پایا داریم ||| |u|t|-|t|u|^2 ||| ? ||| t* t-tt* ||| ? ||u|t|+|t|u|| |||u|t|-|t|u|||. کلمات کلیدی : جابجاگر ، عملگر مثبت ، مقادیر تکین ، نرم بطور یکانی پایا.