نام پژوهشگر: رخسانه مهدیان
رخسانه مهدیان مهرداد کاروان جهرمی
فرض کنید l یک مشبکه ی کامل است. l را یک فریم گوییم هرگاه عمل رسند روی وست توزیع پذیر باشد و یک فریم جبری است هرگاه هر عضو l به صورت وست (سوپریمم) عناصر فشردهی l باشد. در این پایان نامه ضمن مطالعه و ارائه ی بسیاری از خواص فریمهای جبری وبه طور اخص بعد فریمهای جبری (اندازه ی بزرگترین زنجیر عناصر اول در یک فریم جبری)، باتکیه بر نتایج بدست آمده در سالهای اخیر، کاربرد آنها را در موارد گوناگون علی الخصوص مبحث c(x) و زنجیر z -ایده آلها در یک حلقه ی داده شده ی (c(x بررسی می کنیم. اگر x یک فضای تیخونوف باشد، (c(x را حلقه ی تمام توابع پیوسته حقیقی روی x تعریف می کنیم. نتایج بسیاری در بعد فریم های جبری روی فریم z -ایده آلها و d -ایده آلها بکار برده میشود. بعضی از فضاهای تیخونوف مانندشبکه p -فضاها و فضاهای متمم صفرمجموعه در این کاربردها بیشترین سهم را دارند و از اینرو بخشی از این مقاله صرف توضیح کاربردهای ذکرشده برای این فضاها میشود