نام پژوهشگر: مهدی خدادادزاده
مهدی خدادادزاده محمدحسن قاسمیان یزدی
کم بودن تعداد نمونه های آموزشی نسبت به تعداد باندهای تصویر یک مشکل اساسی طبقه بندی داده های ابرطیفی، می باشد. در این تحقیق با ترکیب دو رویه طبقه بندی طیفی -مکانی، یکی بر اساس استفاده از ناحیه بندی به منظور تعریف همسایگی وفقی برای هر پیکسل و دیگری بر پایه استفاده از مدل mrf مبتنی بر پنجره ثابت، مشکل محدود بودن تعداد نمونه های آموزشی در طبقه بندی تصاویر ابرطیفی، تعدیل یافته است. در ابتدا روشی کارا برای احتمالاتی کردن خروجی طبقه بند svm معرفی می گردد. این احتمالهای کلاس بدست آمده در قاعده پیشنهادی رأی گیری اکثریت مطمئن (cmv) جهت ترکیب نتایج ناحیه بندی و طبقه بندی احتمالاتی ابتدایی استفاده می شوند. نتایج طبقه-بندی دو تصویر واقعی aviris و rosis نشان می دهد که این قاعده صحت طبقه بندی را به ترتیب 77/5 و 07/6 درصد در مقایسه با قاعده سنتی رأی گیری اکثریت (mv)، بهبود می دهد. در رویه ای دیگر، برچسب پیکسل های نامطمئن (پیکسل های مرزی) نقشه طبقه بندی ابتدایی، با استفاده از مدل svm-mrf اصلاح می شوند. این روش پیشنهادی نیز علاوه بر بهبود صحت میانگین، در مقایسه با روش سنتی svm-mrf که بر روی کل تصویر اعمال می شود، صحت طبقه بندی را برای تصاویر aviris و rosis، به ترتیب 40/2 و 54/7 درصد با زمان پردازش به مراتب کمتر بهبود می دهد. صحت نهایی طبقه بندی دو تصویر aviris و rosis با استفاده از این روش ترکیبی، به ترتیب 11/89 و 09/96 درصد است که نشان می دهد بر خلاف اغلب روش های پیشنهاد شده پیشین که هر پیکسل را به تنهایی و بدون در نظر گرفتن اطلاعات ساختارهای مکانی پردازش می کنند، الگوریتم طیفی-مکانی پیشنهادی با نمونه های آموزشی کم می تواند طبقهبندی مطلوبی را انجام دهد.