نام پژوهشگر: داود فربد
نبی همتی بهرام فرهادی نیا
در این پایان نامه ابتدا مفاهیم و تعاریف اولیه مرتبط با مجموعه های فازی و توسیع های آن ه یعنی مجموعه های فازی مردد، مجموعه های فازی مردد بازه ای مقدار و مجموعه های فازی مردد دوگان بیان کردیم. سپس اندازه های شباهت را برای مجموعه های فازی مردد، مجموعه های فازی مردد بازه ای مقدار و مجموعه های فازی مردد دوگان ارائه نمودیم. اندازه ی شباهت نسبی را برای مجموعه های فوق بیان کردیم که مبتنی بر اندازه ی فاصله مجموعه های فوق نسبت به ایدآل مثبت و همچنین ایدآل منفی مجموعه های خود می باشد. در نهایت با استفاده از اندازه های شباهت پیشنهادی، الگوریتمی برای حل مساله تصمیم-گیری چند معیاری با داده هایی به صورت مجموعه ی فازی مردد مد نظر معرفی کردیم.
شکیب برات زاده بهرام فرهادی نیا
فصل اول مربوط به تعاریف اولیه اعداد فازی می باشد. در بقیه ی فصل ها تعدادی اندازه ی شباهت معرفی می گردد و با یگدیگر مورد بررسی قرار می دهیم و در نهایت بهترین اندازه ی شباهت را مشخص می نماییم.
رضا لعل دشتی بهرام فرهادی نیا
در این پایان¬نامه برخی از تعاریف و مطالعات انجام شده بر روی مجموعه¬های فازی مردد، مجموعه¬های فازی مردد بازه¬ای مقدار و مجموعه¬های فازی مردد دوگان که توسیع¬هایی از مجموعه¬های فازی می¬باشند را بیان نموده¬ایم. اندازه¬های فاصله، شباهت و آنتروپی مفاهیمی هستند که ارتباط بسیار نزدیکی با یکدیگر دارند. این اندازه¬ها را برای مجموعه¬های مذکور تعریف کرده¬ایم. سپس اندازه¬های آنتروپی مبتنی بر اندازه فاصله،اندازه شباهت و بدون اتکا به این دو فاصله را مطرح کرده و در یکی از مهم¬ترین کاربرد¬های اندازه آنتروپی یعنی به دست آوردن وزن عناصر در یک مساله تصمیم¬گیری چند صفتی، برای پیدا کردن مناسب¬ترین پیشنهاد، از آن بهره بردیم.
سمیه کاهانی داغیان مجتبی بایمانی
در یک تار کشسان که دو انتهای آن در دو نقطه ثابت شده اند با یک ضربه ارتعاش ایجاد می کنیم، می خواهیم وضعیت مکانی و زمانی تار را در شرایط مختلف بررسی کنیم. جهت سرعت بخشیدن به روند یافتن مناسب ترین جواب یک کنترل وارد سیستم می کنیم که در این پایان نامه هدف ما دستیابی به تابع کنترل بهینه برای سیستم معادله موج می باشد. در فضای پیوسته یافتن تابع کنترل بهینه از میان بی شمار کنترل دشوار است، پس با گسسته سازی فضا این فضای پیوسته را به یک فضای با تعداد متناهی گره تحدید می کنیم و معادله موج یک بعدی کنترلی و سیستم الحاقی نظیر آن را در فضای گسسته در نظر می گیریم. فرض می کنیم داده های ابتدایی سیستم کنترلی و داده های ابتدایی سیستم الحاقی باشند، ثابت می کنیم سیستم الحاقی معادله موج در زمان مشاهده پذیر است. با توجه به هم ارزی مشاهده پذیری سیستم الحاقی با کنترل پذیری سیستم کنترلی نتیجه می گیریم، سیستم کنترلی معادله موج در زمان کنترل پذیر دقیق است و یک دنباله از کنترل ها از مینیمال نرم وجود دارند که در شرط کنترل پذیری دقیق صدق می کنند. به روش یکتایی هیلبرت تابع پیوسته و محدب را تعریف کرده و تابع کنترل را محاسبه می کنیم که جواب سیستم الحاقی و مینیمم کننده تابع است. یک دنباله از کنترل ها را به دست آورده نشان می دهیم وقتی طول گام های زمانی و مکانی بسیار کوچک می شوند این کنترل ها به یک تابع کنترل در فضای پیوسته همگرایند.