نام پژوهشگر: احسان بیگوند
احسان بیگوند مهران یزدی
در این پایان نامه، قصد داریم روش های آشکار نمودن علایم ترافیکی در تصاویر گرفته شده از آنها و شناسایی این علایم را مورد بررسی قرار دهیم. سپس با استفاده از بهبود روشهای موجود سیستمی را ارایه دهیم که با استفاده از یک دوربین فیلمبرداری سوار شده روی یک وسیله متحرک و یک دستگاه گیرنده gps data logger محل نصب علایم ترافیکی استاندارد را شناسایی و با توجه به آن، ارزیابی کند که آیا علامت در جای مناسبی نصب شده است یا خیر؟ این سیستم می تواند کمک شایانی به مهندسین بزرگراه، برای حفظ ونگهداری از جاده ها نماید. برای اینکار، بایستی که سیستم پیشنهادی ابتدا علایم ترافیکی را تشخیص دهد. در این پروژه، با استفاده از تجزیه وتحلیل لکه واعمال آستانه مناسب، اشیا را در تصویر شناسایی نموده؛ سپس با استفاده از تجزیه وتحلیل هیستوگرام رنگ وتجزیه وتحلیل ابعاد، لکه های اضافه حذف می شوند و با دقت 83.71% علایم ترافیکی بدرستی آشکار شدند. در مرحله بعد باید علایم شناسایی شوند، برای اینکار، علایم ترافیکی را با توجه به رنگ وشکل آنها گروه بندی کرده وبا استفاده از mlev، بردارهای ویژگی هر علامت را استخراج کرده و با استفاده از بردارهای استخراج شده،یک شبکه عصبی، آموزش می بیند. ابتدا شکل کلی علامت و سپس پیام علامت با استفاده از شبکه عصبی طبقه بندی می شود؛در این مرحله، علایم با دقت 84.74% شناسایی شدند. در مرحله بعد با استفاده از تطابق زمانی، محل نصب هر علامت ترافیکی بدست می آید، وفاصله آن با محل وقوع عارضه(مثل پیچ بعدی) محاسبه می گردد و با توجه به نوع علامت شناسایی شده، ارزیابی می شود. نتایج بدست آمده نشان می دهد که سیستم پیشنهادی می تواند در بهبود وضعیت علایم جاده ای بسیار موثر باشد.