نام پژوهشگر: فاطمه پوراصلان

پیش بینی زمانی و مکانی تراز آب زیرزمینی به وسیله مدل ترکیبی شبکه عصبی- موجکی و زمین آمار (مطالعه موردی: دشت مشهد)
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه قم - دانشکده مهندسی 1393
  فاطمه پوراصلان   طاهر رجایی

آب های زیرزمینی همواره به عنوان یکی از منابع مهم و عمده تامین آب شرب و کشاورزی مطرح بوده است. مدل های قابل اطمینان جهت پیش بینی سطح آب زیرزمینی می توانند در مدیریت بهینه استفاده از منابع محدود آب زیرزمینی کمک شایانی نمایند. در این پژوهش توانایی شبکه عصبی مصنوعی و موجک و زمین آمار برای پیش بینی یک ماه آینده تراز آب زیرزمینی در نقاط مشخصی از دشت مشهد مورد ارزیابی قرار گرفته اند. داده های مورد استفاده جهت مدل سازی تنها شامل تراز آب زیرزمینی ماهانه ده پیزومتر واقع در اطراف شهر مشهد و به مدت 10 سال می باشد. ابتدا به مدل سازی تراز آب زیرزمینی به وسیله دو مدل شبکه عصبی و مدل ترکیبی شبکه عصبی- موجکی پرداخته شد. مقایسه نتایج این دو مدل نشان داد، مدل ترکیبی شبکه عصبی- موجکی با میانگین ضریب انطباق 0/83 ، میانگین قدر مطلق خطا 0/27 و جذر میانگین مربعات خطا 0/34 برای ده پیزومتر نتایج بهتری را نسبت به روش شبکه عصبی نشان می دهد. از این رو از مدل ترکیبی شبکه عصبی- موجکی جهت پیش بینی زمانی منطقه مورد مطالعه استفاده شده است. با استفاده از نتایج بخش پیش بینی زمانی، به پیش بینی مکانی تراز آب زیرزمینی به وسیله زمین آمار پرداخته شد. با توجه به نتایج بدست آمده در این بخش، مدل کروی مناسب ترین برازش را بر نیم تغییرنمای بدست آمده نشان داد. با مقایسه نتایج در بخش انتخاب بهترین روش میان یابی، نمودار روش کریجینگ با ضریب همبستگی 0/70 بهترین نتیجه را مشخص کرد. در انتها نیز با استفاده از روش زمین آمار نقشه های تراز آب زیرزمینی منطقه در دوره زمانی مورد مطالعه تهیه و با نتایج بدست آمده از پیش بینی زمانی و مکانی برای یک ماه آینده مقایسه گردید. نتایج بدست آمده حکایت از کاهش چشمگیر تراز آب زیرزمینی در منطقه مورد مطالعه دارد که نشان از برداشت بیش از حد از منابع آب زیرزمینی این منطقه است.

تعیین و برآورد تراز آب زیرزمینی به روش زمین آمار، شبکه عصبی مصنوعی و موجک
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه قم - دانشکده مهندسی 1393
  فاطمه پوراصلان   طاهر رجایی

آب های زیرزمینی همواره به عنوان یکی از منابع مهم و عمده تامین آب شرب و کشاورزی مطرح بوده است. مدل های قابل اطمینان جهت پیش بینی سطح آب زیرزمینی می توانند در مدیریت بهینه استفاده از منابع محدود آب زیرزمینی کمک شایانی نمایند. در این پژوهش توانایی شبکه عصبی مصنوعی و موجک و زمین آمار برای پیش بینی یک ماه آینده تراز آب زیرزمینی در نقاط مشخصی از دشت مشهد مورد ارزیابی قرار گرفته اند. دادههای مورد استفاده جهت مدل سازی تنها شامل تراز آب زیرزمینی ماهانه ده پیزومتر واقع در اطراف شهر مشهد و به مدت 10 سال می باشد. ابتدا به مدل سازی تراز آب زیرزمینی به وسیله دو مدل شبکه عصبی و مدل ترکیبی شبکه عصبی- موجکی پرداخته شد. مقایسه نتایج این دو مدل نشان داد، مدل ترکیبی شبکه عصبی- موجکی با میانگین ضریب انطباق 0/83، میانگین قدر مطلق خطا 0/27 و جذر میانگین مربعات خطا 0/34 برای ده پیزومتر نتایج بهتری را نسبت به روش شبکه عصبی نشان می دهد. از این رو از مدل ترکیبی شبکه عصبی- موجکی جهت پیش بینی زمانی منطقه مورد مطالعه استفاده شده است. با استفاده از نتایج بخش پیش بینی زمانی، به پیش بینی مکانی تراز آب زیرزمینی به وسیله زمین آمار پرداخته شد. با توجه به نتایج بدست آمده در این بخش، مدل کروی مناسب ترین برازش را بر نیم تغییرنمای بدست آمده نشان داد. با مقایسه نتایج در بخش انتخاب بهترین روش میان یابی، نمودار روش کریجینگ با ضریب همبستگی 0/70 بهترین نتیجه را مشخص کرد. در انتها نیز با استفاده از روش زمین آمار نقشه های تراز آب زیرزمینی منطقه در دوره زمانی مورد مطالعه تهیه و با نتایج بدست آمده از پیش بینی زمانی و مکانی برای یک ماه آینده مقایسه گردید. نتایج بدست آمده حکایت از کاهش چشمگیر تراز آب زیرزمینی در منطقه مورد مطالعه دارد که نشان از برداشت بیش از حد از منابع آب زیرزمینی این منطقه است.