نام پژوهشگر: عاطفه‌ آزاد

سازگاری و پایداری طرح المان محدود میلستین-گالرکین برای معادلات دیفرانسیل با مشتقات جزیی تصادفی نیمه خطی
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شاهرود - دانشکده ریاضی 1393
  عاطفه آزاد   علی مس فروش

پاسخ عددی معادلات دیفرانسیل تصادفی، به خصوص معادلات دیفرانسیل با مشتقات جزیی تصادفی به نسبت نسخه های غیرتصادفی زمینه ای جدید است. تقریبا اکثر الگوریتم هایی که جواب های نسبتا مناسبی برای معادلات دیفرانسیل معمولی به دست می دهند، جواب هایی ضعیف در برابر نسخه تصادفی آن دارند. از جمله راه حل های معرفی شده، روش اویلر-مارایوما و روش میلستین و روش رونگه کوتا برای معادلات دیفرانسیل تصادفی است. دراین پایان نامه عمومی ترین روش المان محدود میلستین-گالرکین را در دسته معادلات دیفرانسیل با مشتقات جزیی تصادفی نیمه خطی به کار می بریم. در فصل اول مفاهیم و تعاریف اولیه را بیان نموده و مروری گذرا بر تعاریف معادلات دیفرانسیل با مشتقات جزیی و مفاهیم نظریه احتمال خواهیم کرد. در فصل دوم طرح اصلی را معرفی کرده و به بیان فرضیات اصلی مورد کاربرد خواهیم پرداخت. همچنین المان های مهم روش المان محدود گالرکین را بیان می کنیم. در فصل سوم دسته ای از طرح های یک گامی عددی را در فضای هیلبرت معرفی می کنیم و تحلیل سازگاری و پایداری را در این چارچوب کار توسعه می دهیم و با مجموعه ای از شرایط مناسب برای به اصطلاح دوپایداری به اتمام می رسانیم و تجزیه ای از خطای برشی محلی ارایه می دهیم. در فصل آخر دوپایداری و سازگاری طرح میلستین-گالرکین را بر اساس چارچوب کار طرح عددی بیان می کنیم.