نام پژوهشگر: حسین رضایی حسنسو
حسین رضایی حسن سو علی اکبر آبکار
تصاویر ماهواره ای به دلیل مزایای بسیاری که دارند از شروع تولید و بکارگیری به عنوان یکی از بهترین و به صرفه ترین روش ها برای تهیه نقشه های پوششی زمین بکار گرفته می شوند. رسیدن به یک راهکار مناسب برای تهیه دقیق این نقشه ها دغدغه مهم مهندسان سنجش از دور از ابتدا تاکنون بوده است. روش های مختلفی تاکنون برای طبقه بندی تصاویر و تهیه نقشه کاربری اراضی و پوشش زمین ارائه شده اند. به دلیل ماهیت پیکسلی این تصاویر برای بیش از دو دهه روش های آماری برای طبقه بندی این تصاویر استفاده می شد که تماماً روش های مبتنی بر پیکسل بودند. به کلاس های حاصل از این روش ها کلاس های طیفی می گفتند. در روش های سنتی تمرکز بیشتر بر روی ابعاد طیفی داده های سنجش از دور قرار دارد و از وابستگی های مکانی پیکسل های مجاور غفلت شده است. به همین دلیل این گونه طبقه بندی کننده ها با مشکلاتی مانند اثر نمک فلفلی در تصویر طبقه بندی شده و یا هم پوشانی طیفی برخی از کلاس ها مخصوصاً در لبه ها مواجه هستند که باعث می شوند نتوانند بازسازی مناسبی از محیط واقعی را ارائه دهند. روش های شئ گرا برای برطرف کردن ضعف های روش های پیکسل مبنا ابداع شدند. در این روش ها چند پیکسل که ماهیت یکسانی دارند و در همسایگی هم هستند، به عنوان یک شئ در نظر گرفته می شوند. به دست آوردن قطعات در آنالیز شئ گرای تصاویر ابتدایی ترین مرحله این گونه آنالیزها است. در روش های معمول طبقه بندی های شئ گرا، اشیا مورد نیاز را با استفاده از پیاده سازی الگوریتم های قطعه بندی بر روی تصویر به دست می آورند. طبقه بندی نهایی قطعات به دست آمده از این روش ها اگرچه ممکن است به دقت بالایی برسد، ولی این اشیاء نمی توانند عوارض واقعی سطح زمین را به خوبی بازسازی کنند. در روش هایی که به تازگی مورد توسعه قرارگرفته اند اشیا مورد نیاز جهت انجام آنالیز شئ گرا از داده های جانبی مانند نقشه های مکانی منطقه استخراج می شوند. در این تحقیق، هشت ویژگی بافت در دو جهت و در چهار باند استخراج می شوند که تشکیل 64 ویژگی جدید می دهند. این 64 ویژگی به همراه ویژگی ndvi استخراج شده از تصویر و چهار باند اصلی تصویر تشکیل یک فضای ویژگی 69 بعدی را می دهند. سپس با استفاده از الگوریتم ژنتیک فضای ویژگی بهینه انتخاب می شود. در ادامه اشیاء مورد نیاز برای آنالیز شئ گرای تصویر، از لایه های جی آی اس استخراج می شوند. سپس ویژگی مکانی نسبت طول به عرض از اشیاء استخراج شده از داده های gis، محاسبه می شود. این ویژگی هم به فضای ویژگی بهینه اضافه شده و فضای ویژگی جدید تشکیل می شود. ویژگی ها با در نظر گرفتن توزیع نرمال برای آن ها، وارد رابطه محاسبه شباهت ها در قانون بیز می شوند. با ترکیب اشیاء استخراج شده و شباهت های محاسبه شده برای پیکسل های داخل هر شئ، میزان شباهت هر شئ به هر کلاس محاسبه می شود. و درنهایت با انجام طبقه بندی بیشینه شباهت در سطح اشیا، برچسب گذاری اشیا انجام می گیرد. درنهایت مشخص می شود که در فرایند بهبودی الگوریتم دقت کلی طبقه بندی به میزان 18 درصد افزایش می یابد.