نام پژوهشگر: اعظم سبزی کار
اعظم سبزی کار نسرین شیرعلی
در این پایان نامه رده ای خاص از حلقه ها با عنوان حلقه های به طور ضعیف منظم را بررسی می کنیم و به یک طبقه بندی از نتایج در مورد ساختار این حلقه ها و ایدال های آن ها دست می یابیم. رامامورتی برای حلقه های آرتینی چپ ثابت کرد که به طور ضعیف منظم بودن معادل با منظم بودن و دومنظم بودن است. مشاهده می کنیم که این نتیجه یک شرط تعمیم یافته است. در واقع نتیجه گیری می کنیم که برای حلقه ی r که در شرط acc روی پوچ ساز راست صدق می کند, اگر r به طور ضعیف منظم باشد, آن گاه دومنظم است و همچنین r به طور ضعیف منظم است اگر و تنها اگر جمع مستقیم تعداد متناهی از حلقه های ساده باشد. پس از آن شرایط ماکسیمال بودن ایدال های قویاً اول را مورد بررسی قرار می دهیم و نشان می دهیم که حلقه کاهش یافته r منظم است اگر و تنها اگر r به طور ضعیف ?? -منظم چپ باشد اگر و تنها اگر هر ایدال قویاً اول r ماکسیمال باشد