نام پژوهشگر: محمد حسین انصاری فر
محمد حسین انصاری فر محمد حسین آق خانی
یکی از پارامترهای موثر در آنالیز طراحی و بهینه سازی خشک کن ها، پیش بینی و مدل کردن فرآیند خشک کردن می باشد. شبکه های عصبی مصنوعی قدرت تأمین دقت و سرعت لازم برای پیش بینی فرآیند خشک کردن را دارند. از این رو در این تحقیق به بررسی فرآیند سینتیک خشک کردن، مدل سازی با شبکه عصبی مصنوعی، بدست آوردن ضریب انتشار رطوبتی موثر، تعیین بهترین مدل ریاضی، بدست آوردن انرژی فعال سازی برای خرما رقم مضافتی در خشک کن کابینتی پرداخته شد. آزمایش های خشک شدن در سه سطح دمایی 50، 65 و 80 درجه سلسیوس و سه سطح سرعت جریان هوا 1، 5/1 و 2 متر بر ثانیه انجام شد. تأثیر دما و سرعت هوا بر پارامترهای زمان، چروکیدگی و تغییر رنگ خرما در قالب آزمایش های فاکتوریل در پایه طرح کاملاً تصادفی بررسی شد. نتایج بدست آمده نشان داد که اثر دما و سرعت هوا بر فرآیند خشک شدن و تغییر رنگ خرما معنی دار می باشد. به طور متوسط افزایش دما از 50 به 80 درجه سلسیوس 77/70% زمان خشک شدن را کاهش داد و دمای 65 درجه از نظر پارامتر های رنگ سنجی دمای مناسب مشاهده شد. برای فرآیند مدل سازی ریاضی 8 مدل تجربی بر داده های آزمایشگاهی برازش داده شد سپس با توجه به بزرگ ترین مقدار ضریب تعیین (r2)، کمترین مقدار مربع کای (?2) و ریشه میانگین مربعات خطا (rmse) بهترین مدل ریاضی با دقت بالا انتخاب شد. نتایج حاصل از تحلیل رگرسیونی مدل های مورد بررسی، نشان داد که مدل پیج بهترین برازش را با داده های بدست آمده دارد. همچنین کمترین ضریب نفوذ رطوبتی موثر 10-10×309/4 در دمای 50 درجه سلسیوس و بیشترین مقدار 9-10×889/1 در دمای 80 درجه سلسیوس بدست آمد. مقدار انرژی فعال سازی بدست آمده در خشک کردن خرمای مضافتی از 21/31 تا 27/42 کیلو ژول بر مول مشاهده شد. برای پیش بینی نسبت رطوبت در طی فرآیند خشک شدن، شبکه عصبی مصنوعی با چهار نرون در لایه ورودی (زمان خشک شدن، سرعت هوای گرم، رطوبت نسبی هوا و دمای خشک کن) و یک نرون در لایه خروجی (نسبت رطوبت) طراحی شد. تعداد 280 الگوی داده برای ساخت شبکه عصبی به دو سری داده های آموزش و آزمون تقسیم شدند. در این طرح از وارسی اعتبار (cross validation) برای تعلیم و آزمون شبکه استفاده شد. برای کاهش خطای انتخاب داده ها، در حدود هشتاد درصد داده ها (224) الگو به صورت تکرارشونده صرف آموزش و مابقی (56) الگو برای آزمون و ارزیابی شبکه بکار گرفته شد. در طی فرآیند یادگیری، میزان فراگیری شبکه توسط معیارهای خطایی مرتباً سنجیده و درنهایت شبکه ای مورد پذیرش قرار گرفت که دارای کمترین خطا بود. شبکه های پس انتشار پیشخور(ffbp) و پس انتشار پیشرو (cfbp) با توابع آستانه سیگموئیدی و خطی مورد استفاده قرار گرفتند. نتایج ارزیابی توپولوژی های مختلف نشان داد که بهترین شرایط مربوط به شبکه (ffbp) با توپولوژی 1-8-7-4، تابع آستانه تانژانت هایپربولیک سیگموئید (tansig) و الگوریتم یادگیری لونبرگ-مارکوارت(lm) می باشد. زیرا در بین تمامی شبکه ها داری کمترین میزان میانگین مربع خطا(mse) 0011/0 ، میانگین خطای مطلق(mae) 0361/0 و بیشترین ضریب همبستگی(r) 9939/0 است.