نام پژوهشگر: راضیه مقبلی دره رودی
راضیه مقبلی دره رودی جعفر امجدی
فرض کنید g=(v,e) گرافی با مجموعه رئوس v و مجموعه یال e بوده و r=k[x1 , … , xn] حلقه چند جمله ای ها روی میدان k باشد. ایده آل i(g)، را ایده آل یالی گراف گوئیم هرگاه توسط تک جمله ای های xixj تولید شود که درآن {xi,xj} یالی از گراف است. زیرمجموعه ی w از مجموعه رئوس گراف را مستقل گوئیم هرگاه هیچ دو راسی از w مجاور نباشند. رابطه ی بسیار نزدیکی بین ایده آل یالی وهمبافت استقلال گراف،ind(g)، همبافتی با مجموعه رئوس v که وجه های آن مجموعه های مستقل g هستند، وجود دارد. به ازای هر گراف g، بعد تصویری g، pd(g)، همان بعد تصویری r-مدول ri(g) تعریف می شود. ثابت می کنیم که v(g) – i(g) < pd(g) < |v(g)| –{ epsilon(g) , tau(g) } و سر انجام با ارائه ی تعاریفی از c_{q}( delta ) و q-امین گروه همولوژی همبافت استقلال گراف، نتایجی را در باب کراندار کردن بعد تصویری گراف بیان می کنیم