نام پژوهشگر: فرشته ایمانینژاد
فرشته ایمانی نژاد سهراب عفتی
مدل ریاضی بیشتر مسائل علمی و پدیده های طبیعی به طور غیرخطی ظاهر می شوند؛ که تنها تعداد محدودی از آن ها دارای جواب تحلیلی و دقیق هستند، بنابراین به دست آوردن یک جواب تحلیلی برای این مسائل کار پر اهمیتی است. روش های گوناگونی برای محاسبه جواب تحلیلی تقریبی معادلات خطی و غیرخطی موجود است که از میان آن ها می توان به روش تکرار تغییراتی هی اشاره نمود. روش تکرار تغییراتی که توسط ریاضی دان و دانشمند چینی جی هوان هی در سال 1999 به عنوان روش اصلاحی بر روی روش ضربگر عمومی لاگرانژ ارائه گردید، ابزار ریاضی قدرتمندی برای یافتن جواب مسائل خطی و غیرخطی می باشد و در عمل به آسانی اجرا می گردد. یکی از مسائل غیرخطی که محاسبه جواب تحلیلی و یا تحلیلی تقریبی برای آن دشوار است، مسائل کنترل پزشکی و از جمله کنترل بیماری سرطان است که در این پایایان نامه به آن می پردازیم. در واقع در این پایان نامه ابتدا یک مدل ریاضی که توصیف کننده فعل و انفعالات سلول های تومور وسلول های ایمنی بدن است مورد بررسی قرار داده و پس از اعمال تابع کنترل به مدل، به یافتن میزان بهینه غلظت دارو برای کنترل تعداد سلول های تومور توسط تئوری کنترل بهینه می پردازیم، سپس شرایط بهینگی را نوشته و آن ها را توسط روش تکرار تغییراتی حل می کنیم.