نام پژوهشگر: عادله خبیری

استنباط برای پارامتر تنش - مقاومت تحت توزیع های لوماکس و لوماکس دوگان
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی 1392
  عادله خبیری   سیمیندخت براتپورباجگیران

مدل تنش-مقاومت به بررسی استقامت مولفه ی مورد نظر در برابر فشار وارده بر آن می پردازد که میزان فشار وارده یک متغیر تصادفی است. در حال حاضر به مدل تنش -مقاومت توجه زیادی می شود، به خصوص برای برآورد ‎r=p(x>y)‎ که در آن ‎x‎ و y متغیرهای تصادفی مستقل هستند. متغیر ‎ x ‎ را نماد مقاومت وy ‎ را نماد تنش می نامند و r ‎ را پارامتر تنش-مقاومت گویند. موضوع تنش-مقاومت توسط بیرنبام معرفی شد و توسط بیرنبام ‎(1956)‎ و ام سی کارتی‎(1958)‎ توسعه یافت. هدف اصلی این بررسی ها مقایسه ی متغیرهای ‎x‎ و ‎y‎ می باشد، که دو رفتار را توصیف می کنند. در این پایان نامه، توزیعی نسبتاً جدید به نام توزیع لوماکس را معرفی می کنیم. چون توزیع لوماکس حالت خاصی از توزیع پارتو می باشد، آن را با نام پارتو نوع دوم نیز می شناسند. هم چنین توزیع لوماکس دوگان که نسبت دو توزیع لاپلاس کلاسیک مستقل و هم توزیع می باشد را نیز معرفی می کنیم. هدف، برآورد پارامتر ‎ rبرای این توزیع ها می باشد. در ادامه پارامتر ‎r‎ را برای توزیع لوماکس دوگان بریده زیر صفر می یابیم. سپس پارامتر r را برای توزیع لوماکس دوگان به روش درستنمایی ماکسیمم و برای توزیع لوماکس به روش های درستنمایی ماکسیمم و بیز برآورد می کنیم و برای هر برآورد با استفاده از الگوریتم هایی در نرم افزار ‎r‎، به شبیه سازی پرداخته و مقدار عددی آن را محاسبه می کنیم. هم چنین پارامتر ‎ rرا تحت توزیع لوماکس به روش های درستنمایی ماکسیمم، گشتاوری و بیز بر اساس رکوردها برآورد کرده و بازه اطمینان را برای پارامترهای توزیع و پارامتر ‎r‎ می یابیم. سپس بازه اطمینان بیشترین چگالی پسین‎(hpd) ‎ ‎‎را برای پارامتر ‎r‎ تحت توزیع لوماکس براساس رکوردها محاسبه می کنیم. در نهایت برای نشان دادن برخی از نتایج نظری و بررسی بیشتر، از الگوریتم هایی در نرم افزار ‎r‎ برای محاسبه ی مثال های عددی مربوط به برآوردها استفاده می کنیم. در فصل اول: به بیان مفاهیم و مقدمات مورد نیاز فصل های بعدی می پردازیم. در فصل دوم: ابتدا به بررسی مدل تنش-مقاومت و بیان تاریخچه، اهمیت و کاربرد مدل می پردازیم. هم چنین توزیع لوماکس دوگان ‎(dld)‎ را تعریف کرده و چندک های توزیع را می یابیم و تابع چگالی بریده زیر صفر توزیع ‎dld‎ را به دست می آوریم. سپس پارامتر ‎r‎ را برای توزیع ‎dld‎ و هم چنین توزیع ‎dld‎ بریده زیر صفر محاسبه می کنیم. نهایتا پارامتر ‎ rرا برای توزیع ‎dld‎ به روش درستنمایی ماکسیمم برآورد کرده و به مطالعه ی عددی آن می پردازیم‎. در فصل سوم: تعریفی از توزیع لوماکس بیان کرده و پارامتر ‎r‎ را برای توزیع لوماکس محاسبه می نماییم. هم چنین پارامتر ‎r‎ را به روش های درستنمایی ماکسیمم و بیز برآورد می کنیم. بازه اطمینانی برای ‎r‎ و پارامترهای این توزیع می یابیم. در پایان هر برآورد، به مطالعه ی عددی و محاسبه ی مثال هایی برای آن برآوردها می پردازیم . در فصل چهارم: پارامتر ‎r‎ را تحت توزیع لوماکس بر اساس رکوردها یافته و آن را به روش های درستنمایی ماکسیمم و بیز برآورد می کنیم. هم چنین بازه اطمینانی برای ‎r‎ و پارامترهای توزیع بر اساس رکوردها می یابیم. بازه اطمینان ‎hpd‎ را نیز برای پارامترهای توزیع و پارامتر ‎r‎ محاسبه می کنیم. در پایان هر برآورد، به مطالعه ی عددی روش ها و مقایسه ی برآوردها براساس رکوردها با میزان برآوردهای فصل قبل می پردازیم.