نام پژوهشگر: وحید آزادزاده
وحید آزادزاده علی محمد لطیف
ردیابی هدف متحرک به مفهوم تعقیب هدف متحرک در یک سری تصاویر متوالی است. ردیابی هدف متحرک در تصاویر متوالی شامل دو بخش آشکارسازی هدف متحرک و تعقیب و ردیابی هدف آشکار شده در تصاویر متوالی، می باشد. روش های مختلفی برای ردیابی هدف متحرک در تصاویر متوالی پیشنهاد شده است که از جمله می توان به روش های شار نوری ، روش های تطبیق مشخصه و روش های پیرامون فعال اشاره کرد. در دسته بندی دیگر الگوریتم های ردیابی در دو گروه طبقه بندی می-شوند. این دسته بندی بر اساس مدل ظاهری هدف به صورت الگوریتم های ردیابی مولد ، و تبعیضی انجام می شود. لازم به ذکر است که این الگوریتم ها در زمان اجرا قابل مقایسه با الگوریتم های تطبیق مشخصه نیستند. در این پایان نامه الگوریتم های ردیابی مبتنی بر تطبیق مشخصه مورد بررسی قرار می گیرد. علت استفاده از الگوریتم های تطبیق مشخصه سرعت بالای این الگوریتم ها در ردیابی اهداف متحرک می باشد. استخراج گرهای ویژگی مورد استفاده الگوریتم هریس، sift، affine-sift و الگوریتم ترکیبی klt می باشد. مشکل عمده ی الگوریتم های تطبیق مشخصه ناتوانی در دسته بندی نقاط مشخصه استخراج شده از پیش زمینه و پس زمینه می باشد. در این پایان نامه سعی شده است توسط تابع متمایزکننده ی بیزین نقاطی که توسط استخراج گرهای ویژگی بدست می آیند، در دو کلاس دسته بندی شوند. ابتدا نقاط ویژگی پیرامون هدف به عنوان پیش-زمینه و ناحیه ی اطراف هدف با شعاعی بیش تر به عنوان پس زمینه، به دست می آیند، سپس برای هر یک از این نقاط شش ویژگی استخراج می شود که عبارت اند از: رنگ هر یک از نقاط ویژگی در فضای رنگ hsv و میانگین، واریانس و دامنه ی تغییرات در یک پنجره ی 3×3 پیرامون نقاط ویژگی استخراج شده. در هر مرحله نقاطی که ضریب اطمینان کم تری داشته باشند حذف خواهند شد، هم چنین پارامترهای تابع متمایزکننده در هر 15 فریم به روزرسانی می شود. نتایج آزمایش ها بهبود الگوریتم های ردیابی مبتنی بر تطبیق مشخصه را در کاربردهای عملی نشان می دهد.