نام پژوهشگر: فاطمه پنجه علی بیک
نفیسه ناصری شمس فاطمه پنجه علی بیک
در این پایان نامه به مطالعه و بررسی یک دسته از روش های تکراری برای حل دستگاه معادلات خطی با ماتریس ضرایب نامنفرد خواهیم پرداخت. در واقع از یک سو مقایسه ی سرعت همگرایی روش های تکراری و از سوی دیگر بررسی عملکرد ماتریس های پیش شرط ساز مناسب برای بهبود سرعت همگرابی این روش ها، مورد بحث قرار خواهد گرفت. کار اصلی انجام شده در این پایان نامه، ارائه ی روش تکراری gmts و مطالعه و بررسی فرم های پیش شرط سازی شده ی این روش می باشد؛ که در [1] نیز به صورت مقاله چاپ شده است. در واقع gmts فرم تعمیم یافته ای از روش های mts است که فصل دوم به مرور این روش اختصاص یافته است. در این پایان نامه نشان داده خواهد شد که با انتخاب های مناسبی از ماتریس های کمکی در روش gmts {و فرم پیش شرط سازی شده)، این روش دارای عملکرد بهتری نسبت به gaor (و فرم پیش شرط سازی شده) است. لازم به ذکر است که روش gaor و فرم های پیش شرط سازی شده ی آن اخیراً در بسیاری از مقالات مورد بررسی قرار گرفته است. برای جزئیات بیشتر به [12,21] مراجعه کنید.
آرزو کشوری پور فاطمه پنجه علی بیک
روشی که در این پایان نامه بر روی آن بحث می کنیم یک روش تکراری دو مرحله ای است که برای اولین بار توسط بای وهمکارانش در سال ( 2003 ) ابداع شد. این روش برای حل دستگاه معادلات خطی معین مثبت غیر هرمیتی استفاده می شود همچنین بای و همکارانش ر.ش تکراری شکاف نرمال وهرمیتی کج را ارائه کردند.فصل اول پایان نامه به تعاریف، قضایا و معرفی روش در فصل دوم به مروری بر روش تکراری می پردازیم. در فصل سوم روش تکراری hss را برای حل معادلات ماتریسی بکار می بریم و در فصل چهارم روش تکراری nss را معرفی نموده و برای حل معادلات ماتریسی بکار می بریم. و بالاخره با اثبات چند قضیه خواص و ویژگی های همگرایی روش را بررسی میکنیم
بتول رحمانی رضاابادی فاطمه پنجه علی بیک
در این پایان نامه، روش تکراری فوق تخفیف شتاب داده شده ی تعمیم یافته(gaor) را مورد مطالعه قرار می دهیم. همچنین به بررسی عملکرد ماتریس های پیش شرط ساز مناسب و تأثیر آنها در بهبود سرعت همگرایی می پردازیم.
مبارکه غروی فاطمه پنجه علی بیک
در این پایان نامه، به مطالعه حل عددی معادلات ماتریسی با بکارگیری روشگرادیان مزدوج 1 خواهیم پرداخت. به طور دقیق تر، یک کلاس از روش های تکراری بر پایه ی شکافت 2 تودرتو برای حل برخی از معادلات ماتریسی خطی مورد بررسی قرار خواهد گرفت. روش مورد بحث شامل یکتکرار درونی و یکتکرار بیرونی است. در تکرار درونی از روشگرادیان مزدوج و در تکرار بیرونی از یکشکافت همگرا استفاده می شود. شرایط کافی برای همگرایی الگوریتم های مورد بررسی به طور کامل بحث شده است. به علاوه یک فرم پیش شرط سازی شده ی این روش برای حل معادلات سیلوستر تعمیم یافته 3 بکار گرفته شده است. به منظور نشان دادن کارایی روش ها، در پایان هر فصل، نتایج عددی گزارش شده است.