نام پژوهشگر: سید جواد صابری فر

طراحی بهینه ای چندهدفی شبکه های عصبی نوع دسته بندی گروهی داده ها (gmdh) و سیستم استنتاجی عصبی-فازی تطبیقی (anfis) به منظور مدل سازی و پیش بینی میزان مصرف گاز طبیعی شهر رشت
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده فنی 1392
  نسا ستایش صومعه سرایی   الهیار داغبندان

چکیده به منظور گازرسانی به موقع و کافی به مشترکین و مصرف کنندگان، پیش بینی میزان مصرف گاز طبیعی امری ضروری برای توزیع کنندگان گاز می باشد. پیش بینی میزان مصرف گاز یک پیش نیاز مهم برای سیستم گاز رسانی کارآمد و پایه ای اساسی برای تصمیم گیری های مهم می باشد. در این تحقیق از شبکه های عصبی نوعann، gmdh و ساختار عصبی-فازی anfis برای پیش بینی میزان مصرف گاز طبیعی استفاده شده است. به منظور مدلسازی، داده های تجربی به دو دسته (70% برای آموزش و 30% برای آزمایش) تقسیم شده اند تا عملکرد سیستم مورد ارزیابی قرار گیرد. مشخصه های هواشناسی استفاده شده به عنوان ورودی، دمای موثر روزانه، میزان بارندگی و رطوبت هوا می باشد و تعداد واحدهای مصرف کننده گاز ورودی دیگر می باشد. مقادیر به دست آمده توسط مدل ها مطابقت بسیار خوبی با داده های تجربی داشته است. همچنین ساختار عصبی-فازی anfis نتایج بهتر و سریع تری را ارائه داده است. کلمات کلیدی: گاز طبیعی، پیش بینی میزان مصرف، شبکه های عصبی نوع gmdh، ساختار عصبی-فازی anfis .