نام پژوهشگر: پریسا نیک زاد
پریسا نیک زاد بیژن طایری
فرض کنید s یک زیرمجموعه دلخواه از گروه جمعی و متناهی g باشد. گراف جمعی کیلی ?=cays(g,s) گرافی با مجموعه رئوس g است. در این گراف دو راس a و bمجاورند اگر وتنها اگر a+b?s. فولرین های (0,3,6) نوعی گراف 3 - منظم هستند که شامل شش ضلعی ها، مثلث ها و نیم یال می باشند. در این پایان نامه با استفاده از فرمول اویلر تعداد هر یک از وجه ها و درجه رئوس را محاسبه می کنیم و نشان می دهیم که این نوع از فولرین ها گراف های جمعی کیلی هستند. در ادامه الگوریتمی معرفی می کنیم که همه ی فولرین های (0,3,6) را می سازد. سپس با استفاده از این الگوریتم و گراف جمعی کیلی که که با هر فولرین یکریخت شده است، مقادیر ویژه آن فولرین را به دست می آوریم. مجموعه ی مقادیر ویژه هر گراف به سه زیر مجموعه تقسیم می شود که عبارت است از l ، -l و m. دو زیر مجموعه ی l و –l قرینه هستند. اگر گراف g هیچ نیم یالی نداشته باشد، آن گاه m={3,-1,-1,-1}. همچنین در این پایان نامه گراف های جمعی را که زیرمجموعه ای از گراف های جمعی کیلی محسوب می شوند معرفی نموده و برخی خواص آن ها را بررسی می کنیم. مراجع [?] و [?] از منابع اصلی این پایان نامه هستند.