نام پژوهشگر: پریسا رجایی
پریسا رجایی باقر مقدس زاده بزاز
بیشتر روش های کلاسیک آماری توسعه پیدا کرده اند در حالی که به جنبه قوی بودن آنها پرداخته نشده است. به این معنی که تا چه اندازه این روش ها در برابر اختلالات و نوساناتی که در داده های نمونه وجود دارد (مصل وجود نقاط پرت و ...) مقاوم هستند. این پایان نامه روش های قوی –s برآورد و –gs برآورد (-s برآوردگر تعمیم یافته) را برای برآورد مدل های رگرسیون چند متغیره و برای موقعیت هایی که نقاط پرت وجود دارند، مورد مطالعه قرار می دهد. ابتدا نظریه اصلی قوت را توسط مثالی با داده های واقعی ، بیان نموده و اندازه های قوی را برای چگونگی محاسبه قوت یک برآوردگر معرفی خواهیم کرد. بعد از بیان روش کمترین مربعات و اثبات قوی نبودن آن، 8 روش قوی برآورد را که از اهمیت بیشتری برای مدل رگرسیون یکنواخت برخوردار هستند، مرور می نماییم. سپس –s برآوردگر های رگرسیون چند متغیره را برای تعریف نموده، قوی بودن –s برآوردگرها را به وسیله محاسبه نقاط مجزا و تابع اثر آن ها مطالعه می نماییم. –s برآوردگر ها برآوردگرهای قوی هستند که می توانند نقاط مجزای 50 درصد را به دست آورند اما در این صورت کارایی آنها نسبت به برآوردگرهای کلاسیک کمتر می شود به همین دلیل –gs برآوردگرها (-s برآوردگرهای تعمیم یافته) را برای مدل رگرسیون چند متغیره معرفی خواهیم نمود. –gsبرآوردگرها کلاس جدیدی از برآوردگرهای قوی برای مدل رگرسیون چند متغیره هستند و به وسیله مینیمم کردن دترمینان یک برآوردگر قوی از ماتریس پراکندگی تفاضل باقیمانده ها به دست می آیند. برتری اصلی –gs برآوردگرها به دست آوردن نقاط مجزای 50 درصد و کارایی بالای آنها در اغلب مدل ها است. همچنین –gs برآوردگرها می توانند شیب و ماتریس پراکندگی جملات خطای مدل رگرسیون چند متغیره را بدون نیاز به عرض از مبدا برآورده کنند. به علاوه چون –gs برآوردگرها بر مبنای تفاضل هستند دارای خاصیت استقلال اند، به این معنی که وقتی مولفه های یک بردار تصادفی مستقل اند، برآورد ماتریس پراکندگی، ماتریسی قطری است. این موضوع برای –s برآوردگرها در حالت کلی برقرار نیست. در نهایت با استفاده از روش بوت استراپ سریع و قوی، توزیع نمونه ای –s برآوردگرها و –gs برآوردگرها را محاسبه نمودیم و نشان دادیم که انجام روش بوت استراپ سریع و قوی برای هر دو روش بسیار بهتر از انجام روش بوت استراپ کلاسیک است.