نام پژوهشگر: قاسم سلیمانی راد
قاسم سلیمانی راد حمیدرضا رحیمی
در این رساله ابتدا به بررسی قضایای نقطه ثابت برای نگاشت های ضعیف سازگار در فضاهای نوع متریک و نوع متریک مخروطی بدون نیاز به پیوستگی نگاشت ها می پردازیم. در ادامه، قضایای نقطه ثابت دوتایی و چهارتایی را برای نگاشت های ضعیف سازگار بیان و اثبات می کنیم. سپس وجود نقاط ثابت و نقاط ثابت سه تایی را برای -tانقباض ها در فضای متریک مخروطی بررسی می کنیم. در این قسمت برای تضمین کاربردی بودن نتایج، مسائلی را در رابطه با وجود جواب برای یک مساله مقدار اولیه و معادله انتگرالی مطرح و حل می کنیم. در ادامه، نقاط ثابت و نقاط ثابت مشترک را تحت -cفاصله در فضای متریک مخروطی به دست می آوریم. در انتها نتایجی از نقطه ثابت مشترک برای چهار نگاشت را در فضای متریک برداری ریس مقدار بیان می کنیم. در تمام رساله مثال هایی برای کارایی نتایج به کار گرفته شده است. همچنین، مقایسه ای بین نتایج به دست آمده و نتایج قدیمی به منظور نشان دادن اهمیت و تفاوت موضوع ارائه شده است.