نام پژوهشگر: روحاله جهانیپور
مریم عبدچیری روح اله جهانی پور
این پایان نامه به بررسی نظریه پایداری معادلات دیفرانسیل عادی و تابعی با استفاده از روش نقطه ثابت میپردازد. در این تحقیق پاره ای از مشکلات که در روش مستقیم لیاپانف با آن مواجه هستیم را مورد مطالعه قرار میدهیم. می بینیم که هرگاه نظریه نقطه ثابت را استفاده کنیم بسیاری از این مشکلات برطرف خواهند شد. به ویژه مطالعه ما به نگاشتهای انقباضی محدود میشود.
مهسا اسدسنگابی بهنام بازیگران
در این پایان نامه مفهوم شبه همسانریختی و هم ارزی مشبکه ای و خواص آن را مورد بررسی قرار می دهیم. ترن در سال 1962 هم ارزی مشبکه ای فضاهای توپولوژیک را بر حسب خانواده ای از مجموعه های بسته معرفی کرد. در طول سال ها خواص فضاهای هم ارز مشبکه ای مورد توجه پژوهشگران بسیاری قرار گرفت . مفهوم شبه همسانریختی برای اولن بار توسط گروتندیک معرفی شد. در سال 1972 ایپ تعریف معادل دیگری برای آن بیان کرد.از آنجا که تشخیص همسانریختی دو فضا در ساختارهای توپولوژیک از اهمیت خاصی بر خوردار است، بدست آوردن شرایط معادل همسانریختی حائز اهمیت است. در این راستا خواص توپولوژیک را بیا می کنیم و بررسی می کنیم تحت کدامیک از این شرایط دو فضای هم ارز مشبکه ای همسانریخت یا شبه همسانریخت هستند.
سمیرا طباطبایی روح اله جهانی پور
هدف از انجام این تحقیق بررسی معادله x(t)=- [a(t.s)g(x(s))ds با تاخیر متغیر r(t)≥0 می باشد که در آن t-r(t) اکیدا صعودی است و در یک همسایگی x=0،xg(x)>0 (x≠0). شرایطی را برای r، aو g از معادله مذبور تعریف می کنیم، به طوری که به ازای تابع پیوسته اولیه داده شده φ، یک نگاشت p روی فضای متریک کامل بتوان تعریف کرد و این نگاشت شامل یک نقطه ثابت باشد. علاوه بر بررسی شرایط وجود و یکتایی جواب های معادله بالا، پایداری جواب صفر را نیز برای این معادله نشان خواهیم داد. همچنین شرایطی را به دست می آوریم که با تعریف فضای متریک کامل با یک متریک نمایی، روی یک زیر مجموعه بسته ، جواب صفر معادله پایدار مجانبی شود. در پایان با استفاده از روش هایی که برای به دست آوردن نتایج پایداری جواب صفر معادله بالا بیان شده، این نتایج را نیز برای معادلات x(t)=- [a(t.s)g(x(s))ds و نیز x(t)=-a(t)g(x(t-r(t))) مورد بررسی قرار خواهیم داد.