نام پژوهشگر: فرزانه مصطفی زاده
خواص هندسی دینامیک موضعی در سیستم های همیلتونی: روش شاخص همترازی تعمیم یافته(گالی)
پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده ریاضی
1392
فرزانه مصطفی زاده حسین خیری استیار
فرزانه مصطفی زاده حسین خیری استیار
در این پایان نامه، ابتدا مفاهیم اولیه در مورد سیستم های دینامیکی بیان می شود. سپس به بررسی سیستم های همیلتنی، خواص، معادله تغییر و نماهای لیاپانوف این نوع سیستم ها می پردازیم. در ادمه روش سالی را بطور خلاصه برای مدارهای آشوبناک و منظم شرح می دهیم. این شاخص در حالت آشوبناک بطور نمایی به صفر میل می کند، و در حالت منظم حول مقادیر غیر صفر نوسان دارد. سرانجام روش گالی برای تشخیص بین حرکت منظم و آشوبناک بیان می شود. گالی در حالت آشوبناک بطور نمایی به صفر میل می کند و در حالت منظم حول مقادیر غیر صفر نوسان و یا با یک تابع توانی به صفر میل می کند. همچنین نشان می دهیم که $salipropto gali_2$ می باشد. این روش در سیستم های همیلتونی با دو و سه درجه آزادی به کار برده می شود و با روش نمای لیاپانوف و سالی مقایسه می گردد.