نام پژوهشگر: رباب علی خانی

بررسی وجود جواب های سرتاسری برای معادلات انتگرال دیفرانسیل فازی غیرخطی و جواب های موضعی دستگاه های دیفرانسیل-جبری فازی خطی
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده علوم ریاضی 1392
  رباب علی خانی   فریبا بهرامی

برای قالب بندی پدیده های دنیای واقعی‎،‎ در بسیاری موارد‎،‎ اطلاعات درباره ی رفتار سیستم های دینامیکی مبهم و نامطمئن است و باید چنین ابهاماتی‎،‎ برای دست یافتن به قالب دقیق تر‎،‎ در نظر گرفته شوند‎.‎ یک روش طبیعی برای قالب بندی سیستم های دینامیکی تحت مفروضات مبهم و نامطمئن‎،‎ معادلات دیفرانسیل و انتگرال دیفرانسیل فازی است‎ .‎ دیدگاه های مختلفی برای تعبیر جواب معادلات دیفرانسیل فازی و در نتیجه برای معادلات انتگرال دیفرانسیل فازی تحت مشتق پذیری تعمیم یافته وجود دارند‎.‎ دیدگاه ما در فصل سوم این رساله‎،‎ بر اساس تعبیر جدیدی از جواب های معادلات دیفرانسیل فازی بنا نهاده شده است که در آن‎،‎ جواب ها نوع متفاوتی از مشتق پذیری تعمیم یافته را روی زیربازه های افراز ‎$[a,b]$‎ دارند‎.‎ در ادامه ی فصل سوم‎،‎ تحت این نوع تعبیر برای جواب‎،‎ به بررسی جواب های سرتاسری مسئله ی مقدار اولیه ی فازی برای معادلات انتگرال دیفرانسیل غیرخطی از نوع ولترا پرداخته می شود‎.‎ در فصل چهارم این رساله‎،‎ با به کار بردن روش جواب های بالایی و پایینی‎،‎ قضیه های وجود و یکتایی مربوط به معادلات انتگرال کسری فازی بررسی می شوند‎.‎ همچنین با استفاده از این روش‎،‎ به اثبات وجود جواب‎ ‎ برای مسئله ی مقدار اولیه ی فازی از معادلات انتگرال دیفرانسیل خواهیم پرداخت که شامل مشتق های کسری ریمان-لیوویل هستند‎.‎ اهمیت کار بر این حقیقت منطبق است که استفاده از روش جواب های بالایی و پایینی‎،‎ ما را قادر می سازد تا تحت شرایط ضعیف تر به بررسی نتایج وجود و یکتایی برای مسئله ی مقدار اولیه فازی از معادلات انتگرال و انتگرال دیفرانسیل کسری فازی بپردازیم‎. ‎ سیستم های دینامیکی مقید با شرایط اولیه ی مبهم با استفاده از مسایل مقدار اولیه فازی برای معادلات دیفرانسیل-جبری قالب بندی می شوند‎.‎ در فصل پنجم این رساله‎،‎ برای اولین بار نتایج وجود‎،‎ یکتایی و یک روش برای حل مسایل مقدار اولیه ی فازی از معادلات دیفرانسیل-جبری خطی بیان خواهد شد‎.