نام پژوهشگر: روشنک پرتوآذر
روشنک پرتوآذر محمدرضا فرهنگ دوست
کلاف های برداری تعمیمی از ضرب خارجی یک فضای توپولوژیکی با یک فضای برداری است. در این طرح می خواهیم نشان دهیم که کلاس های مشخصه به هر کلاف برداری یک کلاس از فضای پایه نسبت می دهد. در ابتدا با یک نظر اجمالی ممکن است به نظر آید فانکتور کلافی مماس ممکن است ساده نباشد،زیرا کلاف برداری یک منیفلد به همراه یک ساختار اضافی است )زیرا یک کلاف مماسی به طور متعارف به یک منیفلد نسبت داده شده می شود..(تغییرات کلاس هایمشخصه منجر به تغییرات برای کلاف های مماس میشود.برای مثال قضیه چرن _ویل از کلاس های مشخصه ای است که در هندسه دیفرانسیل برای به وجود آوردن تغییرات بر کلاف های برداری استفاده میشود.کاربرد کلاف های مماس،کلاس های مشخصه منجر به دیفیومورفیسم های پایای عددی برای منیفلد می شود که اعداد مشخصه نامیده می شود.اعداد مشخصه برای مثال به ویژگی کلاسیک اولر تعمیم داده می شود. یک مقطع از کلاف برداری ?:e?mیک نگاشت از m به e است که هر نقطه ای از mرا به داخل تاری از کلاف روی همان نقطه می نگارد. همان طورکه می دانیم میدان های برداری و فرم های دیفرانسیل روی منیفلد هر دو مقطع هایی از کلاف های برداری روی منیفلد می باشد. در سال 1895 در یک سری از مقالات پیشگام، که با analysis situt شروع می شود پوانکاره مفهوم همولوژی را معرفی کرد و توپولوژی جبری مدرن را بنا گذاشت. به طور کلی، یک منیفلد فشرده بدون مرز یک چرخ است و یک چرخ با صفر متشابه است اگر مرز منیفلد دیگری نباشد. کلاس های هم ارزی از چرخ ها تحت رابطه ی همولوژی کلاس های همولوژی نامیده می شود. در سال 1931 جرج دراهام در پایان نامه ی دکترایش در نتیجه ی آنچه اکنون دراهام کوهمولوژی و همولوژی منفرد با ضرایب حقیقی ثابت می نامیم نشان داد که فرم های دیفرانسیل در همان اصول مانند چرخ ها و مرز ها صدق می کنند. اگر چه او در این مقاله به صراحت دراهام کوهمولوژی را تعریف نکرد، به آن در کارش اشاره شده بود. در سال 1938 یک تعریف رسمی از دراهام کوهمولوژی ظاهر شد.