نام پژوهشگر: محمد اکبری زاده
محمد اکبری زاده علی جمالی
یکی از مهم ترین قسمتهای فرآیند تصفیه آب، واحد انعقاد و لخته سازی می باشد. عموما دوز بهینه منعقدکننده با استفاده ازجارتست در آزمایشگاه وتجربه خود اپراتور تعیین می شود. با این حال، جارتست وقت گیر و هزینه بر است و با تغییر شرایط آب خام در زمان واقعی تطابق کمتری دارد. برای غلبه براین محدودیت ها می توان از محاسبات نرم استفاده کرد.. دراین تحقیق، ازسیستم چندهدفی تکاملی استنتاج عصبی-فازی تطبیقی(anfis) برای مدل سازی وپیش بینی دوز بهینه منعقدکننده مصرفی در تصفیه خانه رشت بااستفاده ازمجموعه داده های ورودی -خروجی، استفاده شده است. در این روش از الگوریتم های ژنتیک چندهدفی (muga) برای بهینه سازی ساختار anfis استفاده می شود. به منظور مدل سازی، داده های تجربی به دو بخش آموزشی وآزمایشی تقسیم شدند. از 70درصد داده ها به عنوان داده های آموزش و30 درصد آنها به عنوان داده های آزمایشی استفاده شد. نتایج حاصل از مدل سازی با داده های تجربی مقایسه شدند. بعد از اجرای ساختار anfis، مدل بدست آمده تطابق بسیار خوبی با نتایج تجربی نشان داد.