نام پژوهشگر: محمود بهروزی فر

بررسی جواب های مثبت چندگانه برای معادلات بیضوی نیم خطی شامل پتانسیل های مربع معکوس چند تکین و بخش غیرخطی های محدب-مقعر
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی (نوشیروانی) بابل - دانشکده ریاضی 1391
  ام کلثوم خزایی کوه پر   سمیه خادملو

چکیده پایان نامه: در این رساله ابتدا به معرفی روش خمینه نهاری پرداخته ایم . در فصل دوم این روش را برای حل نوعی معادلات بیضوی همراه با توابع وزن تغییرعلامتی به صورت: {?(-?u=?a(x) u^q+b(x) u^p, x??@u?0, u?0, x??@u=0, x???)? به کار گرفته ایم . در فصل سوم به کمک لم انقباض فشردگی این روش را برای حل نوعی معادلات بیضوی تکین-چندگانه همراه با غیرخطی های محدب-مقعر به فرم : {?(-?u-?_(i=1)^k???_i/|x-a_i |^2 u=|u|^(2^*-2) u+? |u|^(q-2) u, x?? ?@u=0, x???)? به کار برده ایم ، فصل چهارم نتایج جدیدی را برای معادلات به فرم معادلات فصل دوم همراه با توان سوبولف بحرانی که در زیر آمده ، بیان می کند : {?(-?u=?a(x) ?u|u|?^(q-2)+b(x) ?u|u|?^(2^*-2), x??@u=0, x???)? و در نهایت در فصل پنجم حالت خاصی ازمعادلات به فرم معادلات فصل سوم را با در نظر گرفتن دستگاه بیضوی مربوطه به صورت : {?(lu= ??/2^* u|u|^(?-2) |v|^?+?u|u|^(2^*-2)+a_1 u+a_2 v, x?? @lv= ??/2^* v|v|^(?-2) |u|^?+?v|v|^(2^*-2)+a_2 u+a_3 v, x?? @u=v=0, x???)? مورد بررسی قرار داده ایم و به کمک قضیه مسیر کوهی ، نتایج جدیدی را برای این نوع از دستگاه ها و همچنین رفتار مجانبی جواب های آنها بیان کرده ایم .

نقطه ثابت و پایایی تعمیم یافته معادلات تابعی درجه دوم
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی (نوشیروانی) بابل - دانشکده ریاضی 1391
  معصومه شعبان نژاد   بهرام محمدزاده

این پایان نامه مبتنی بر پنج فصل می باشد. هدف ما در این پایان نامه اثبات پایایی هایرز- اولم- راسیاس برای معادلات تابعی مختلف در فضاهای گوناگون می باشد. در فصل اول به بیان مفاهیم و مقدماتی که مورد نیاز است می پردازیم. در فصل دوم معادله ی تابعی درجه ی دوم نوع آپولونیوس تعریف می شود و با استفاده از قضیه نقطه ثابت پایایی این معادله در فضای باناخ اثبات می-شود. فصل سوم شامل دو بخش است که در بخش اول پایایی هایرز- اولم- راسیاس برای نامعادلات تابعی کوشی- جن سن در فضای جبر باناخ فازی و در بخش دوم در فضای نرمدار فازی اثبات می شود. فصل چهارم به اثبات پایایی و ابر پایایی همریختی های ژوردان و مشتقات ژوردان روی جبرهای باناخ وc^*- جبرها با روش نقطه ثابت اختصاص دارد. در فصل پنجم اثبات پایایی معادلات تابعی تک متغیره مورد بررسی قرار گرفته است

حل‎ مسائل با مقدار اولیه داده شده با استفاده از درونیابی بیرخوف
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی (نوشیروانی) بابل - دانشکده علوم پایه 1393
  مجید اکراد فرزقی   روح الله یوسف پور

ابتدا رده ای از درونیابی بیرخوف را روی نقاط گره ای دلخواه معرفی می کنیم. خصوصیات مربوط: وجود‏، یکتایی‏، همگرایی‏ و خطای آن را مورد بررسی قرار می دهیم.‎‎ سپس درونیابی بیرخوف را در موارد زیر به کار می بریم: 1) حل عددی مسئله مقدار آغازین با مرتبه n و‎ خطاهای متناظر در این محاسبات. 2) محاسبه بعضی از تابع های خاص. 3) فرمول های مربعی با دقت درجه m+n-1,m+kn-1(m,n,k ? n, n,k ? 2). در نهایت مثال های عددی را با تکنیک ارائه شده حل می کنیم و با نتیجه های موجود مقایسه می کنیم‏، مشاهده می کنیم که روش ارائه شده کاراتر‏، ساده تر‏ و با دقت بیشتری نسبت به برخی روش های موجود است. در حالت کلی با مسئله مقدار اولیه مرتبهm ‎‎‎‎‎‎‎‎ به شکل زیر سروکار داریم: {?(y^((m))=f(x,y(x),y^? (x),…,y^((l) ) (x)); m ? l+1@y^((k) ) (x_0 )=a_k; x_0 ?(a,b), k=0,…,m-1)?