نام پژوهشگر: معصومه شعبان نژاد
نقطه ثابت و پایایی تعمیم یافته معادلات تابعی درجه دوم
پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی (نوشیروانی) بابل - دانشکده ریاضی
1391
معصومه شعبان نژاد بهرام محمدزاده
معصومه شعبان نژاد بهرام محمدزاده
این پایان نامه مبتنی بر پنج فصل می باشد. هدف ما در این پایان نامه اثبات پایایی هایرز- اولم- راسیاس برای معادلات تابعی مختلف در فضاهای گوناگون می باشد. در فصل اول به بیان مفاهیم و مقدماتی که مورد نیاز است می پردازیم. در فصل دوم معادله ی تابعی درجه ی دوم نوع آپولونیوس تعریف می شود و با استفاده از قضیه نقطه ثابت پایایی این معادله در فضای باناخ اثبات می-شود. فصل سوم شامل دو بخش است که در بخش اول پایایی هایرز- اولم- راسیاس برای نامعادلات تابعی کوشی- جن سن در فضای جبر باناخ فازی و در بخش دوم در فضای نرمدار فازی اثبات می شود. فصل چهارم به اثبات پایایی و ابر پایایی همریختی های ژوردان و مشتقات ژوردان روی جبرهای باناخ وc^*- جبرها با روش نقطه ثابت اختصاص دارد. در فصل پنجم اثبات پایایی معادلات تابعی تک متغیره مورد بررسی قرار گرفته است