نام پژوهشگر: محمد رضا پیری اردکانی

گروه خودریختی های گراف مقسوم علیه صفر روی حلقه های خاص
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه یزد - دانشکده ریاضی 1391
  محمد رضا پیری اردکانی   بیژن دواز

در این پایان نامه خواصی از حلقه ی r را با در نظر گرفتن ?(r)‘ گراف مقسوم علیه صفر r‘ تحت عمل منظم g روی x بدست می آوریم. در فصل دوم ، فرض می کنیم r ‎ یک حلقه جابجایی یکدار، ‎ x مجموعه تمام غیر یکال های ناصفر r و g گروه تمام یکال های r است. اگر r یک حلقه و x اجتماع تعداد متناهی مدار تحت عمل منظم g روی x باشد، آن گاه نشان می دهیم که تعداد تمام ایده آل ها متناهی و بزرگتر یا مساوی تعداد مدارها است. در فصل سوم، فرض می کنیم r=mat_2(f) حلقه تمام ماتریس های ‎2×2‎ روی یک میدان متناهی، x مجموعه تمام غیر یکال های ناصفر r و g گروه تمام یکال های r است. پس از بررسی بعضی خواص تحت عمل منظم چپ ‎(راست) g روی x نشان می دهیم که گروه خودریختی گراف ?(r) (گراف مقسوم علیه صفر ‎ r)‎ با گروه متقارن ‎ s_(‎"?" f" ?" +1)از درجه یکریخت است. در فصل آخر، فرض می کنیم ‎ r=mat_n(f) حلقه تمام ماتریس های n× n روی میدان متناهی f است. نشان می دهیم که گروه خودریختی های گراف ?(r) گراف مقسوم علیه صفر r با گروه s_t گروه متقارن از مرتبه t که در آن t تعداد مدارها تحت عمل منظم است. واژه های کلیدی: گراف مقسوم علیه صفر، گروه خودریختی های گراف، عمل منظم، مدار