نام پژوهشگر: محمد قادری زفره یی
محمد قادری زفره یی صغری نوبختیان
مسائل برنامه ریزی دوسطحی نوع خاصی از مسائل بهینه سازی ریاضی هستند که در آن ها مجموعه ی متغیرها به دو قسمت (x,y) تقسیم می شوند، به طوری که متغیر y، جواب بهینه ی یک مسئله ی بهینه سازی پارامتریک بر حسب متغیر x است؛ لذا یک مسئله ی برنامه ریزی دوسطحی، در مفهوم سلسله مراتبی به شمار می رود که برخی از قیود آن، توسط یک مسئله ی بهینه سازی دیگر تعریف می شوند. کاربرد گسترده ی مسائل برنامه ریزی دوسطحی در اقتصاد، مهندسی، پزشکی و زیست شناسی و ...، ریاضی دانان را به بررسی مدل های ریاضی جدید، و طراحی روش های حل آن ها ترغیب نموده است. اهمیت این دسته از مسائل باعث شده است که محور این مطالعه قرار گیرند؛ لذا در این جا، به بررسی مطالب زیر پرداخته می شود: ابتدا مفاهیم پایه ای بهینه سازی و تاریخچه ی مختصری از مسائل برنامه ریزی دوسطحی در فصل 1، بیان می شود. سپس در فصل 2، کاربردی از مسائل برنامه ریزی دوسطحی گسسته در مسئله ی حداقل نمودن جریمه ی نقدی حمل ونقل گاز طبیعی معرفی شده که منجر به ارائه ی یک مدل ریاضی برای حل این مسئله می شود؛ آن گاه با انجام تغییراتی مجاز در مسئله ی مفروض، حل مدل گسسته ی ارائه شده توسط دو مسئله ی کمکی خطی امکان پذیر می شود و بدین صورت با رهایی از دشواری های حل مسائل برنامه ریزی دوسطحی گسسته، رویکری برای حل مسئله ی اولیه ارائه می شود. در فصل 3، یک مسئله ی برنامه ریزی دوسطحی خطی در ساده ترین شکل ممکن، یعنی در غیاب قیود سطح بالا، با اِعمال شرایط بهینگی کان ناکر بر مسئله ی سطح پایین، به یک مسئله ی تک سطحی تبدیل می شود؛ سپس قیود تعریفی مکمل کمبود، به صورت مضربی از یک پارامتر جریمه به تابع هدف مسئله ی سطح بالا الحاق می گردند؛ بدین ترتیب، یک مسئله ی تک سطحی با قیود خطی و تابع هدف غیرخطی به دست می آید و آن گاه با افزودن مفروضاتی متعادل به مسئله، الگوریتمی کاربردی برای حل آن پیشنهاد می شود. در آخر هم برای صحت بخشیدن به الگوریتم پیشنهادی، مثالی عددی ارائه می شود. اما روش کان ناکر، با وجود کاربرد قابل توجه آن در حل مسائل برنامه ریزی دوسطحی خطی، دارای نقاط ضعفی نیز می باشد که از آن جمله می توان به عملکرد نامناسب آن در مواقعی که قیود در سطح بالا از شکل خطی خاصی برخوردارند، نام برد. در فصل 4، با معرفی اصول علمی این روش و اصلاح تعریف جواب مسائل برنامه ریزی دوسطحی خطی، نوع توسعه یافته ای از روش کان ناکر جهت حل طیف گسترده تری از این مسائل ارائه می شود. در فصل 5 نیز که آمیخته ای از دو فصل قبلی است، با استفاده از روش کان ناکر توسعه یافته، الگوریتم پیشنهادی در فصل 3، برای حل مسائل برنامه ریزی دوسطحی خطی در شکل کامل آن ها، یعنی در حضور همه ی قیود سطح بالا و پایین، توسعه داده می شود. سرانجام با ارائه ی مثالی، این فصل نیز خاتمه می یابد. برنامه هایی نیز جهت حل مثال های ذکر شده در فصول قبلی، به همراه خروجی آن ها، در پیوست ضمیمه شده اند.