نام پژوهشگر: محمد حسین خاتمی

کاربرد شبکه عصبی مصنوعی در پیش بینی رفتار گودهای عمیق
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده مهندسی 1391
  محمد حسین خاتمی   فریدون پویانژاد

هدف اصلی از تحلیل گودها با استفاده از شبکه عصبی مصنوعی به دست آوردن نگاشتی غیر خطی بین پارامترهای ورودی و خروجی مورد نظر می باشد تا با استفاده از آن بتوان رفتار گود را پیش بینی کرد. مطالعات نشان می دهد پارامترهای متعددی بر رفتار گودها تاثیر گذار هستند که از جمله ی مهم ترین آن ها می توان به سختی دیوار، فاصله ی مهارها و سختی آن ها، عرض و عمق گود، مشخصات خاک و روش گودبرداری اشاره کرد. در بسیاری از موارد هندسه گودبرداری و مشخصات خاک قابل دستیابی هستند اما پیش بینی جا به جایی دیواره های گود همیشه با عدم قطعیت مواجه است. در تحلیل با کمک شبکه عصبی این عدم قطعیت در کنار سایر مقادیر پارامترها می باشد بنابراین پیش بینی های مدل قابل اعتمادتر خواهند بود. در این تحقیق از شبکه عصبی مصنوعی mlp برای پیش بینی تغییر مکان جانبی ماکزیمم دیوار حائل بر مبنای دو دسته داده استفاده شده است. در دسته ی اول 47 داده ی واقعی از گود هایی که در خاک های رسی حفر گردیده بود جمع آوری و از آن ها برای طراحی شبکه عصبی استفاده گردید. نمودارهای رگرسیون نشان دادند شبکه به خوبی آموزش دیده و ساختار آن شکل گرفته است. برای انجام تحلیل حساسیت داده ها به سه دسته کلی تقسیم گردیده تا بتوان تغییرات درصد نسبی تغییر مکان جانبی ماکزیمم را برای تک تک داده های ورودی مورد بررسی قرار داد. نتایج بدست آمده عمل کرد صحیح شبکه را تایید کرده و در انتها رابطه ایی برای محاسبه ?h max/h% ارائه گردیده است. دسته دوم داده های ساخته شده بر اساس داده های واقعی و با کمک نرم افزار های مبتنی بر روش fem به دست آمده اند. تحلیل حساسیت داده ها در این شبکه عصبی نیز نشان داد شبکه منطق حاکم بر داده ها را به خوبی آموخته است.