نام پژوهشگر: شوبو صادقی
شوبو صادقی محمد ابری
محور اصلی بحث در این پایان نامه فضاهای همگن و انواع آن می باشد و این که با در نظر گرفتن نگاشت های معینی در تعیین همگنی خصوصیات و تعاریفی برای این فضاها به دست می آید. همچنین قضیه ی مهم بنت را بیان و اثبات می کنیم و در ادامه تعمیم متری این قضیه که توسط دایجکسترا بیان و اثبات شد را می آوریم. فصل اول شامل تعاریف مقدماتی و پایه در توپولوژی است که ما را در فهم بیشتر فصل های آتی کمک می کند. در فصل دوم فضاهای همگن و انواع آن، که از دو نوع چگال شمارای همگن و موضعاً قوی همگن تشکیل شده است، بیان می شود. قضیه اصلی این فصل قضیه ی بنت است که توسط بنت در سال 1972 اثبات شد و به این صورت است که هر فضای متری جدایی پذیر موضعاً فشرده که موضعاً قوی همگن باشد، چگال شمارای همگن است. در ادامه میل قضیه بنت را با استفاده از معیار همگرایی استقرایی ثابت کرد و همراه با آندرسون و کریتس قضیه بنت را برای فضاهای کامل هم اثبات کردند. در ادامه ی فصل دوم فضاهای صفربعدی همگن و قوی همگن و - nهمگن آورده می شود. در فصل سوم ابتدا توابع لیپ شیتز تعریف می شود و در ادامه مثال هایی از این توابع و خواص این توابع را بیان می کنیم. در پایان ایزومتری ها را تعریف می کنیم. در آخر و در فصل چهار خواص همگن فضاها تحت ایزومتری ها و توابع لیپ شیتز بیان می شود. بحث اصلی این قسمت تعمیم متری قضیه ی بنت می باشد که به این صورت بیان می شود: هر فضای کامل که لیپ شیتز موضعاً قوی همگن باشد آنگاه لیپ شیتز چگال شمارای همگن است و هر فضای کامل که ایزومتری موضعاً قوی همگن باشد، آن گاه ایزومتری چگال شمارای همگن است. در ادامه ی این فصل قضایایی در این رابطه به همراه مثال هایی ارائه خواهد شد.