نام پژوهشگر: پروین بقایی شهرکی

حل معادلات دیفرانسیل با مشتقات جزئی با روش تبدیل دیفرانسیل و روش ترفتز
پایان نامه دانشگاه تربیت معلم - سبزوار - دانشکده ریاضی و کامپیوتر 1391
  پروین بقایی شهرکی   عبدالله قلی زاده

پایان نامه حاضر در سه فصل تدوین شده است که به صورت زیر مرتب شده اند. در فصل اول یک سری مفاهیم پایه و مقدمه ای کوتاه بر روش ترفتز، روش تبدیل دیفرانسیل و معادله برگر آورده شده است. فصل دوم شامل شش بخش است که در بخش اول مسائل مقدار مرزی برای یک دسته از معادلات دیفرانسیل جزئی مرتبه دوم که شامل معادلات سهموی و هذلولوی است، معرفی شده است. با استفاده از تبدیلات مختلفی نشان داده شده است که چگونه این معادلات به شکل معادله موج و پخش-واکنش تبدیل می شوند. علاوه بر شرایط مرزی دیریکله، نیومن و مرکب یک دسته از شرایط مرزی موضعی که اخیرا مورد بحث واقع شده و حل مسائل مقدار مرزی برای موضوعاتی که از لحاظ ریاضی درجه بندی شده در نظر گرفته شده است. در بخش دوم چگونگی کاهش حل معادلات دیفرانسیل جزئی وابسته به زمان به حل مسائل مقدار مرزی برای معادله هلمهلتز تعمیم یافته ناهمگن معرفی شده است. در این جا، فرض شده جواب های خصوصی مشخص می شوند و بر روش ترفتز کلی برای حل مسائل مقدار مرزی همگن و در حالت خاص روی روش هایی برای ارضای شرایط مرزی متمرکز می شویم. یک نوع از این روش هایی که مورد بررسی قرار گرفته هم محل، کمترین مربعات و روش گالرکین است. در بخش جهار به موضوع برآورد عددی جواب های خصوصی برای معادله هلمهلتز تعمیم یافته ناهمگن پرداخته شده است. دو شیوه برآورد عددی مستقیم دامنه انتگرال و روش تقابل دوگان مورد بحث واقع شده اند. در این جا جمله منبع با یک مجوعه مناسب از توابع پایه تقریب زده می شوند و سپس یک جواب خصوصی تقریبی با حل تحلیلی معادله هلمهلتز تعمیم یافته ناهمگن با تقریب جمله منبع به دست آورده می شود. سه نوع از تقریب هایی که در نظر گرفته می شوند عبارتند از: توابع پایه ای شعاعی، چندجمله ای ها و تقریبات مثلثاتی که معایب و مزیت شان مورد بررسی قرار گرفته شده است. در بخش پنجم به بررسی پایه های ترفتز پرداخته شده است دو کلاس کلی از پایه ها در نظر گرفته شده، پایه اف-ترفتز بر اساس جواب اولی معادله هلمهلتز تعمیم یافته و پایه های تی-ترفتز که با جدایی متغیرها در دستگاه مختصات دکارتی و قطبی به دست می آیند. در بخش ششم مثال های عددی ارائه شده، کارایی و تأثیر شیوه مورد بحث را نشان می دهد. در فصل سوم ابتدا تعاریف و قضایای اصلی تبدیل دیفرانسیل یک ، دو و سه بعدی آورده شده و سپس به حل معادله برگر با بعدهای مختلف با روش فوق پرداخته شده است.