نام پژوهشگر: سوسن اسداللهی اسدآبادی
سوسن اسداللهی اسدآبادی رضا خوش سیر
دستگاه معادلات خطی زیر را در نظر بگیرید egin{equation*} ax=b,qquad ain{mathbb{c}^{n imes{n}}},quad x,bin{mathbb{c}^{n}} end{equation*} که در آن $a$ یک ماتریس غیرهرمیتی با بعد بزرگ است. در این پایان${}$نامه یک الگوریتم هیبریدی را برای حل این دستگاه بررسی می${}$کنیم. این الگوریتم از روش $ m{gmres}$ مبتنی بر زیرفضای کرایلوف برای تولید یک تقریب جواب استفاده می${}$کند و برای بهبود همگرایی این تقریب از تکرار ریچاردسون با پارامترهای مرتب${}$سازی شده با دنباله لجا استفاده می${}$کند. در این مطالعه به بررسی رفتار همگرایی این الگوریتم و تکرارهای زیرفضای کرایلوف که برای حل دستگاه${}$های غیرهرمیتی با مقیاس بزرگ به کار می${}$روند می${}$پردازیم. نتایج عددی نشان می${}$دهند که این الگوریتم هیبریدی نیاز به حافظه کمتر و هم چنین عملکرد اجرایی بهتری نسبت به حل${}$کننده${}$های نامتقارن نظیر $ m{gmres}$ دارد. به$ $علاوه از این روش هیبریدی برای حل دستگاه${}$های خطی $au=b$ که از روش${}$های تفاضل متناهی روی معادلات دیفرانسیل با مشتقات جزئی به دست آمده${}$اند، استفاده می${}$کنیم.